PHY404 Linear Spaces Spring 2006

Final Exam Wednesday May 32006 9:30-10:45am

1 Define the creation-annihilation operators by
$a^{\dagger}|n>=\sqrt{ }(n+1)| n+1>$ for $n=0,1, \cdots, a|n>=\sqrt{ } n| n-1>$ for $n=1,2 \cdots$,
and $a \mid 0>=0$. Here the collection of vectors $\mid n>, n=0,1, \cdots$ is an orthonormal basis.
1.1 For any complex number z, find an eigenvector for a with eigenvalue z, as a linear combination $\sum_{n=0}^{\infty} c_{n}(z) \mid n>$.
1.2 Find the length of the eigenvector by evaluating the sum $\sum_{0}^{\infty}\left|c_{n}(z)\right|^{2}$ and use that to find an eigenvector of unit length.

2 Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & -i & 0 \tag{2}\\
i & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

2.1 What are its eigenvalues and eigenvectors?
2.2 Find its resolvent $R(z)=(A-z)^{-1}$ and verify that the positions of its poles are the eigenvalues of A.

