PHY404 Linear Spaces Spring 2006

Final Exam Wednesday May 32006 9:30-10:45am

1 Define the creation-annihilation operators by
$a^{\dagger}|n>=\sqrt{ }(n+1)| n+1>$ for $n=0,1, \cdots, a|n>=\sqrt{ } n| n-1>$ for $n=1,2 \cdots$,
and $a \mid 0>=0$. Here the collection of vectors $\mid n>, n=0,1, \cdots$ is an orthonormal basis. For any complex number z, find an eigenvector for a with eigenvalue z, as a linear combination $\sum_{n=0}^{\infty} c_{n}(z) \mid n>$. Find the length of the eigenvector by evaluating the sum $\sum_{0}^{\infty}\left|c_{n}(z)\right|^{2}$ and use that to find an eigenvector of unit length.

2 Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & -i & 0 \tag{2}\\
i & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

2.1 What are its eigenvalues and eigenvectors?
2.2 Find its resolvent $R(z)=(A-z)^{-1}$ and verify that the positions of the poles are the eigenvalues.

Solutions

1. If we put

$$
\begin{equation*}
a \sum_{n=0}^{\infty} c_{n}(z)\left|n>=z \sum_{n=0}^{\infty} c_{n}(z)\right| n> \tag{3}
\end{equation*}
$$

we get

$$
\begin{align*}
\text { L.H.S. } & =\sum_{1}^{\infty} \sqrt{ } n c_{n}(z) \mid n-1> \\
& =\sum_{0}^{\infty} \sqrt{ }[n+1] c_{n+1}(z) \mid n> \\
& =z \sum_{0}^{\infty} c_{n}(z) \mid n> \tag{4}
\end{align*}
$$

So

$$
\begin{equation*}
\sqrt{ }[n+1] c_{n+1}(z)=z c_{n}(z) \tag{5}
\end{equation*}
$$

Or,

$$
\begin{align*}
c_{n}(z) & =\frac{z}{\sqrt{ } n} c_{n-1}(z) \\
& =\frac{z}{\sqrt{ } n} \frac{z}{\sqrt{ }[n-1]} c_{n-2}(z) \\
& =\cdots \\
& =\frac{z}{\sqrt{ } n} \frac{z}{\sqrt{ }[n-1]} \cdots \frac{z}{\sqrt{ } 1} c_{0}(z) \tag{6}
\end{align*}
$$

That is,

$$
\begin{equation*}
c_{n}(z)=\frac{z^{n}}{\sqrt{ }[n!]} c_{0}(z) \tag{7}
\end{equation*}
$$

The square of the length of the vector is

$$
\begin{equation*}
\sum_{0}^{\infty}\left|c_{n}(z)\right|^{2}=\left|c_{0}(z)\right|^{2} \sum_{0}^{\infty} \frac{|z|^{2 n}}{n!}=\left|c_{0}(z)\right|^{2} e^{|z|^{2}} \tag{8}
\end{equation*}
$$

Thus the length is finite for any complex number z.
Setting the length to one gives

$$
\begin{equation*}
c_{0}(z)=e^{-\frac{1}{2}|z|^{2}} \tag{9}
\end{equation*}
$$

Thus any complex number is an eigenvalue of a with normalized eigenvector

$$
\begin{equation*}
\left.e^{-\frac{1}{2}|z|^{2}} \sum_{0}^{\infty} \frac{z^{n}}{\sqrt{ }[n!]} \right\rvert\, n> \tag{10}
\end{equation*}
$$

2. The characteristic polynomial of the matrix is

$$
\left|\begin{array}{ccc}
1-z & -i & 0 \tag{11}\\
i & 1-z & 0 \\
0 & 0 & -2-z
\end{array}\right|=-(z+2)\left[(1-z)^{2}-1\right]=-(z+2)\left[z^{2}-2 z\right]=-z(z-2)(z+2)
$$

Thus the eigenvalues are $0,2,-2$. The eigenvector corresponding to -2 is easiest to find

$$
\left(\begin{array}{ccc}
1 & -i & 0 \tag{12}\\
i & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=0 \Rightarrow u_{1}=u_{2}=0
$$

For the eigenvalue 0 ,

$$
\left(\begin{array}{ccc}
1 & -i & 0 \tag{13}\\
i & 1 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=0 \Rightarrow u_{1}=i u_{2}, u_{3}=0
$$

And for the eigenvalue 2

$$
\left(\begin{array}{ccc}
-1 & -i & 0 \tag{14}\\
i & -1 & 0 \\
0 & 0 & -4
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=0 \Rightarrow u_{1}=-i u_{2}, u_{3}=0
$$

Choosing the length of each eigenvector to be one gives

$$
\left(\begin{array}{c}
0 \tag{15}\\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{ } 2}\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right), \frac{1}{\sqrt{ } 2}\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right)
$$

respectively as the eigenvectors of the eigenvalues $-2,0,2$.
The resolvent is the inverse

$$
R(z)=\left(\begin{array}{ccc}
1-z & -i & 0 \tag{16}\\
i & 1-z & 0 \\
0 & 0 & -2-z
\end{array}\right)^{-1}
$$

Because it is block diagonal we can break the matrix up into a two by two matrix

$$
r(z)=\left(\begin{array}{cc}
1-z & -i \tag{17}\\
i & 1-z
\end{array}\right)^{-1}
$$

and inverting just the number $-2-z$. Now

$$
r(z)=\frac{1}{z(z-2)}\left(\begin{array}{cc}
1-z & i \tag{18}\\
-i & 1-z
\end{array}\right)
$$

Thus

$$
R(z)=\left(\begin{array}{ccc}
\frac{1-z}{z(z-2)} & \frac{i}{z(z-2)} & 0 \tag{19}\\
-\frac{i}{z(z-2)} & \frac{1-z}{z(z-2)} & 0 \\
0 & 0 & -\frac{1}{2+z}
\end{array}\right)
$$

The singularities are at the points $z=-2,0,2$ which are the eigenvalues of the matrix A.

