
Homework 5 – March 1, 2006 Solution prepared by Tobin Fricke
Physics 402 – Probability Prof. S.G. Rajeev, Univ. of Rochester

13. ξ1, · · · ξn are a set of n independent identically distributed random variables uniformly distributed in
the interval [0, 1]. Let µ and σ be the mean and standard deviation of one of them. Define ζn =

1
σ
√

n

∑n
i=1(ξi − µ).

When considering sums of random variables, it’s almost always easiest to use the characteristic function.
This is actually a result of the convolution theorem, which says that the fourier transform turns
convolution into multiplication and vice versa. Pretend we have independent discrete random variables
x and y and we’re interested in their sum z = x + y. Then it’s pretty easy to break that down into a
sum over all possible partitions of z:

pz(k) = P [z = k] =
∞∑

τ=−∞
P [x = τ ] · P [y = (k − τ)] = (px ∗ py)(k) (1)

That has the structure of a convolution. Go to continuous random variable and a similar relation
holds; the sum becomes an integral. Take the fourier transform and the probability densities turn into
characteristic functions and the convolution turns into multiplication:

pz(k) = (px ∗ py)(k)

Fz(t) = (Fx · Fy)(k) = Fx(k)Fy(k) (2)

Then of course we may take the inverse transform to get back to a probability density, from the
characteristic function, of the sum.

(This tour through characteristic functions is not only labor-saving in the analysis, but is labor-saving
in numerical computations, too. It turns out that it takes time proportional to n log n to compute
a fourier transform of n samples whereas it takes time proportional to n2 to compute a convolution
in the “näıve manner”. For this reason convolutions are almost always computed using the relation
x ∗ y = F−1{F{x} · F{y}}.)

(a) What is the probability density function of ξn for n ∈ {1, 2, 3}?
For the uniform distribution over [0, 1], we know the distribution’s mean (µ = 1/2) and variance
(σ =

√
1/12). It’s not clear here whether the problem is looking for the sample mean and variance

which are estimated from an ensemble of samples of the random variable, or the distribution mean
and variance, which are known theoretically from the distribution. I’ll assume the latter. The
former converges to the latter given many samples anyway.
The characteristic function is defined as:

fη =
〈
eitη

〉
=

∫ ∞

−∞
eitxpη(x)dx (3)

Instead of the random variables ξi distributed uniformly over [0, 1], consider the transformed
random variables ξ′i = (ξi − µ)/σ; from here we’ll consider these transformed variables instead.
These new variables are also unformly distributed, now over the interval

[
− 1

2σ , 1
2σ

]
with density

σ. The characteristic function for these guys is:

fξ′i
(t) =

∫ 1/2σ

−1/2σ

σeitxdx =
2σ

t
sin

(
t

2σ

)
= sinc

(
t

2σ

)
We immediately have the answer to the n = 1 case:
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pζ1(x) =
{

σ − 1
2σ ≤ x ≤ 1

2σ
0 otherwise

For n = 2 the problem is simple enough that we don’t actually have to do the whole jaunt through
fourier space (via the characteristic function). I call the function whose value is constant (in this
case, with value σ) in some finite interval (in this case

[
− 1

2σ , 1
2σ

]
), and zero elsewhere a square

“gate” function. We have two identical gate functions sitting on the x axis. If we visualize the
convolution process as a “sliding dot product” (or “delay-and-sum”) operation, we realize that
the convolution of these two gates will be a triangle function, also centered on the origin. The
triangle function will have twice the horizontal extent as the original gate functions, so it will be
nonzero in the region

[
− 1

σ , 1
σ

]
. Moreover, since this is a probability density, it must integrate to

one; therefore the height of the triangle is σ and we may write down the answer.

pζ2(x) =
{

σ − |x|
σ − 1

σ ≤ x ≤ 1
σ

0 otherwise

For n = 3 and higher, it becomes simpler just to apply what we know about characteristic
functions. We recall faη+b(t) = eitbfη(at) and compute:

fζ3(t) = f 1√
3 (ξ′1+ξ′2+ξ′3)(t) =

(
fξ′

(
1√
3
t

))3

=
24σ3

√
3

t3
sin3

(
t

2σ
√

3

)
We can take inverse fourier transform to get a probability density:

pη(x) =
1
2π

∫ ∞

−∞
fη(t)e−itxdt (4)

(b) What is the probability density function of ζn as n →∞?
Consider what happens to the characteristic function:

fζ∞(t) = lim
n→∞

fζn(t) = lim
n→∞

[
fξ′

(
t√
n

)]n

= lim
n→∞

(
2σ
√

n

t
sin

t

2σ
√

n

)n

This converges to a Gaussian. One way to see this is to expand fξ′ in a power series. Also, this is as
good a time as any to remember that σ =

√
1/12. We use the identity limn→∞(1+x/n)n = expx

which was derived in the solutions to the first problem set.

fζ∞(t) = lim
n→∞

[
1− t2

2n
+ O(n−2)

]n

= exp
{
−t2/2

}
As any electrical engineer will tell you, the fourier transform of a Gaussian is a Gaussian:

pζ∞(x) =
1
2π

∫ ∞

−∞
fζ∞(t)e−iktdt =

1
2π

∫ ∞

−∞
fζ∞(t)e−t2/2e−iktdt =

1
2π

exp{−x2/2}

(Though the normalization is not correct here. Renormalizing we find p(x) =
√

2
π e−x2/2.)

This is the result we should have expected from the central limit theorem.

14. Write a computer program that generates n uniform random variables, and calculates ξn as defined
above. Then repeat this a large number N times to get a simulated data sample for ξn and compute
the relative frequencies in bins of equal width. For N = 1000 and n ∈ {1, 2, 3, 100, 1000}, compare the
simulation with the theoretical predictions above, by plotting or preparing a table.

Coming soon!

2



15. Let ξ1, ξ2 be independent identically distributed random variables with the Cauchy (or Lorentzian)
probability distribution function (p(x) = (1/π)/(1 + x2)).

(a) What is the probability density of the sum ξ1 + ξ2?
The Cauchy distribution has characteristic function:

fξ(t) = exp{−|t|} (5)

The sum ξ1 + ξ2 therefore has characteristic function:

fξ1+ξ2(t) = exp{−|t|} exp{−|t|} = exp{−2|t|}

The inverse transform is:

pξ1+ξ2(x) =
1
2π

∫ ∞

−∞
e−itxe−2|t|dt

In general we find (using Jordan’s lemma):

pξ1+···+ξn
=

n

π(n2 + x2)

In particular:

pξ1+ξ2 =
2

π(4 + x2)

(b) If there are n such independent identially distributed Cauchy variables ξ1, · · · ξn, what is the prob-
ability density function of their average in the limit n →∞?
You will find that the distribution of the mean of an ensemble containing many Cauchy-distributed
random variables again is distributed according to the Cauchy distribution. The central limit
theorem does not apply here, because it assumes finite variance!
See http://en.wikipedia.org/wiki/Cauchy distribution.
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