Solution prepared by Tobin Fricke Physics 402 - Probability Prof. S.G. Rajeev, Univ. of Rochester
7.1. Waiting times in a Poisson Process A Geiger counter emits a click each time a radioactive decay happens. If the average number of decays in unit time is λ, what is the proability distribution of the time interval between clicks?

The decay of a bulk quantity of radioactive material is one example of a Poisson process. For a Poisson process, we expect the number of events occuring in a unit time interval to follow the Poisson distribution, $p[k$ events in unit time $]=e^{\lambda} \lambda^{k} / k!$, where λ is the expected number of events in the unit time interval. This must old for any notion of a "unit time interval," so we may interpret λ as the rate of events. The distribution of number of events occurring in an arbitrary time duration t is therefore also Poisson, with parameter λt. The probability of receiving exactly k events in a time interval t is therefore $p\left[N_{t}=k\right]=\exp (-\lambda t)(\lambda t)^{k} / k$.

The condition of having a waiting time T until the first event is equivalent to having exactly zero events in time N_{T} followed by exactly one event in the following time $d t$. For a poisson process, the probability of getting an event in an interval $[t, t+d t]$ is $\lambda d t$. Consequently the probability distribution of waiting times is $p\left[N_{t}=0\right] \lambda d t=\exp (-\lambda t) \lambda d t$. The probability density of waiting times is therefore $\lambda \exp (-\lambda t)$.

Note that this integrates to unity over the range $t \in(0, \infty)$.
We may also solve for the probability density of waiting times by writing and then solving an integral relation.
Let $p(t) d t$ be the probability that the waiting time is in $[t, t+d t]$. Then $\int_{0}^{t} p\left(t^{\prime}\right) d t^{\prime}$ is the probability that the waiting time is less than t . Subtract this from unity to get the probability that the waiting time is at least $\mathrm{t}, 1-\int_{0}^{t} p\left(t^{\prime}\right) d t^{\prime}$. Consider the probability that the waiting time is at least t and an event happens in the following time interval $d t$; these are independent events, so we may just multiply by the probability $\lambda d t$ of an event occurring in a duration $d t$. We've recovered an expression for the probability that the waiting time is between t and $t+d t$, giving us the integral relation:

$$
\left(1-\int_{0}^{t} p\left(t^{\prime}\right) d t^{\prime}\right) \lambda d t=p(t) d t
$$

We can begin to solve this by taking the derivative with respect to t. Note that $\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}=F(t)-F(0)$, where $F^{\prime}(t)=f(t)$, so $(d / d t) \int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}=f(t)$. We get:

$$
p^{\prime}(t)=\frac{d}{d t}\left(1-\int_{0}^{t} p\left(t^{\prime}\right) d t^{\prime}\right) \lambda=-\lambda p(t)
$$

This has the well-known solution

$$
p(t)=C e^{-\lambda t}
$$

where C is some constant. The normalization requirement $\int_{0}^{\infty} p(t) d t=1$ gives us

$$
p(t)=\lambda e^{-\lambda t}
$$

which agrees with what we found earlier.
7.2. Nearest neighbor distances between randomly spaced points Assume that homes in thep rarie are distributed uinformly with an average density of n per square mile. What is the probability distribution of the distance to the nearest neighbor from a given home? What is the average distance between nearest neighbors?

This question is similar to 7.1 above; instead of a "waiting time" until the next event after some arbitrary starting time, we're interested in the "waiting distance" as we travel radially outward from a given point until we encounter another house.

Approaching this using the integral relation technique, we may write

$$
\left(1-\int_{0}^{r} p\left(r^{\prime}\right) d r^{\prime}\right) 2 \pi r n d r=p(r) d r
$$

where the density n fills the role of λ in the one-dimensional case.
Requiring that $p(0)=0$ and $\int_{0}^{\infty} p(r) d r=1$ (note the lower limit of integration; the probability of a negative waiting time is zero), we find

$$
p(r)=2 \pi n r \exp \left\{-n \pi r^{2}\right\}
$$

The average nearest-neighbor distance is given by

$$
\left\langle r_{\text {nearest neighbor }}\right\rangle=\int_{0}^{\infty} r p(r) d r=\frac{1}{2 \sqrt{n}}
$$

8. Transformation of Random Variables

There is a nice explanation of this in Numerical Recipes in C, chapter 7.2. The text is available freely at http://www.library. cornell.edu/nr/bookcpdf/c7-2.pdf.

We employ conservation of probability: $\left|p_{y}(y) d y\right|=\left|p_{x}(x) d x\right|$. We are given that the probability density of x is uniform, i.e. $p_{x}(x)=1$, and we are given several desired probability densities p_{y}. The procedure is to solve for the derivative $d x / d y$, obtain x in terms of y by integrating, and then invert the relation to get y in terms of x.

$$
\begin{gathered}
\left|p_{y}(y) d y\right|=\left|p_{x}(x) d x\right| \\
\frac{d x}{d y}= \pm p_{y}(y) \\
x=\int \frac{d x}{d y} d y= \pm \int p_{y}(y) d y
\end{gathered}
$$

The following Mathematica code peforms this procedure for $p_{y}(y)=-e^{-y}$:

```
py[y_] := -Exp[-y]
Solve[x==Integrate[py [y] , y] ,y]
```

We find that $y_{1}(x)=-\log (x), y_{2}(x)=\operatorname{erf}^{-1}(2 x-1)$, and $y_{3}(x)=\tan (\pi x)$.
9. Multiplicative Random Walk Consider the following simple model for the size of a colony of bacteria. We start with a number n_{0}; in each generation the number can be either multiplied by a factor u with probability $1 / 2$ or divided by the same number with the same probability. What is the probability distribution of the number of bacteria after a large number N of steps? The number u is near unity.

If η is the random variable giving the population of the colony after many steps, then we may write η as a product over many random variables η_{i} each of which may attain the values u and $1 / u$, describing how the size of the colony changes in the i th step:

$$
\eta=\eta_{1} \eta_{2} \eta_{3} \cdots \eta_{N}
$$

If we take the logarithm, then the product is converted into a sum:

$$
\log \eta=\log \eta_{1}+\log \eta_{2}+\log \eta_{3}+\cdots \log \mid e t a_{N}
$$

The central limit theorem tells us that the sum of many independent random variables will have a normal (Gaussian) distribution. If the logarithm of η follows the normal distribution, then η itself follows the so-called log-normal distribution (see http://en.wikipedia.org/wiki/Log_normal).

One may also write the final size of the colony as $y=n_{0} u^{x}(1 / u)^{N-k}=n_{0} u^{2 x-N}$, where x is the random variable giving the number of successes in N Bernoulli trials; k will in general follow the binomial distribution with mean $\mu=N p=N / 2$ and variance $\sigma^{2}=n p q=N / 4$, but for large N this converges to the normal distribution with the same mean and variance.

Use the conservation of probability formula:

$$
|p(y) d y|=|p(x) d x|
$$

to get:

$$
p(y)=\frac{d x}{d y} p(x)
$$

Solve the expression $y=n_{0} u^{2 x-N}$ for x :

$$
x=\frac{\log \left(y / n_{0}\right)}{2 \log u}+\frac{N}{2}
$$

Take the derivative:

$$
\frac{d x}{d y}=\frac{1}{2 y \log u}
$$

We know that $p(x)$ is the probability density of the normal distribution with mean $\mu=N / 2$ and variance $\sigma^{2}=N / 4$:

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}=\sqrt{\frac{2}{\pi N}} \exp \left\{-\frac{(N-2 x)^{2}}{2 N}\right\}=\sqrt{\frac{2}{\pi N}} \exp \left\{-\frac{-\left(\log \frac{y}{n_{0}}\right)^{2}}{2 N(\log u)^{2}}\right\}
$$

So we have $p(y)=\frac{d x}{d y} p(x)$, which becomes, with everything plugged in:

$$
p(y)=\frac{1}{y(\log u) \sqrt{2 \pi N}} \exp \left\{-\frac{-\left(\log \frac{y}{n_{0}}\right)^{2}}{2 N(\log u)^{2}}\right\}
$$

Note that this is the probability density function of the log-normal distribution with mean $\mu=\log \left(n_{0}\right)$ and variance $\sigma^{2}=N(\log u)^{2}$.

