Homework 3 — February 15, 2006 Solution prepared by Tobin Fricke
Physics 402 — Probability Prof. S.G. Rajeev, Univ. of Rochester

7.1. Waiting times in a Poisson Process A Geiger counter emits a click each time a radioactive decay
happens. If the average number of decays in unit time is X\, what is the proability distribution of the time
interval between clicks?

The decay of a bulk quantity of radioactive material is one example of a Poisson process. For a Poisson
process, we expect the number of events occuring in a unit time interval to follow the Poisson distribution,
p[k events in unit time] = e*\¥/k!, where ) is the expected number of events in the unit time interval. This
must old for any notion of a “unit time interval,” so we may interpret A as the rate of events. The distribution
of number of events occurring in an arbitrary time duration ¢ is therefore also Poisson, with parameter At.
The probability of receiving exactly k events in a time interval ¢ is therefore p[N; = k] = exp(—At)(\t)* /k!.

The condition of having a waiting time 7" until the first event is equivalent to having exactly zero events
in time Np followed by exactly one event in the following time dt. For a poisson process, the probability of
getting an event in an interval [¢t, ¢ 4 dt] is Adt. Consequently the probability distribution of waiting times is

[Ny = 0]Adt = exp(—At)Adt. The probability density of waiting times is therefore | A exp(—At) |
Note that this integrates to unity over the range ¢ € (0, 00).

We may also solve for the probability density of waiting times by writing and then solving an integral relation.

Let p(t)dt be the probability that the waiting time is in [t, ¢ + dt]. Then fg p(t')dt’ is the probability that
the waiting time is less than t. Subtract this from unity to get the probability that the waiting time is at
least t, 1 — fot p(t')dt’. Consider the probability that the waiting time is at least ¢ and an event happens in
the following time interval dt; these are independent events, so we may just multiply by the probability A\dt
of an event occurring in a duration dt. We’ve recovered an expression for the probability that the waiting
time is between ¢ and t + dt, giving us the integral relation:

(1 — /Otp(t’)dt’> M = p(t)df

We can begin to solve this by taking the derivative with respect to t. Note that fg f(tHdt' = F(t)— F(0),
where F'(t) = f(t), so (d/dt) f(f f(&Hdt' = f(t). We get:

)= 5 (1= [ s ) A= —xpio

This has the well-known solution

p(t) = Ce™™

where C' is some constant. The normalization requirement fooo p(t)dt = 1 gives us

p(t) = re

which agrees with what we found earlier.

7.2. Nearest neighbor distances between randomly spaced points Assume that homes in thep rarie
are distributed winformly with an average density of n per square mile. What is the probability distribution
of the distance to the nearest neighbor from a given home? What is the average distance between nearest
neighbors?



This question is similar to 7.1 above; instead of a “waiting time” until the next event after some arbitrary
starting time, we’re interested in the “waiting distance” as we travel radially outward from a given point
until we encounter another house.

Approaching this using the integral relation technique, we may write

(1 - /O ' p(r')dr’) dmrndr = p(r)dr

where the density n fills the role of A in the one-dimensional case.
Requiring that p(0) = 0 and fooop(r)dr = 1 (note the lower limit of integration; the probability of a
negative waiting time is zero), we find

’p(r) = 27nr exp{ —nmr?} ‘

The average nearest-neighbor distance is given by

o0
<Trlearest neighbor> = / Tp(’/‘)d?" =
0
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8. Transformation of Random Variables

There is a nice explanation of this in Numerical Recipes in C, chapter 7.2. The text is available freely at
http://www.library.cornell.edu/nr/bookcpdf/c7-2.pdf.

We employ conservation of probability: |p,(y)dy| = |p,(z)dz|. We are given that the probability density
of z is uniform, i.e. p,(z) =1, and we are given several desired probability densities p,. The procedure is
to solve for the derivative dz/dy, obtain z in terms of y by integrating, and then invert the relation to get
y in terms of x.

Ipy (y)dy| = |ps(z)dz|

dx
-
dy py(y)
dx
xz/@®=i/m@@
The following Mathematica code peforms this procedure for p,(y) = —e¥:

pyly_1 := -Expl-y]
Solve [x==Integrate[py[y],y],y]

We find that y; () = —log(z), ya(z) = erf '(2z — 1), and y3(x) = tan(wz).

9. Multiplicative Random Walk Consider the following simple model for the size of a colony of bacteria.
We start with a number ng; in each generation the number can be either multiplied by a factor u with
probability 1/2 or divided by the same number with the same probability. What is the probability distribution
of the number of bacteria after a large number N of steps? The number u is near unity.

If n is the random variable giving the population of the colony after many steps,then we may write n as
a product over many random variables 7; each of which may attain the values v and 1/u, describing how
the size of the colony changes in the ith step:

n="mmn2n3 1NN

If we take the logarithm, then the product is converted into a sum:



logn = logn; + logne +logns + - - - log letan

The central limit theorem tells us that the sum of many independent random variables will have a
normal (Gaussian) distribution. If the logarithm of n follows the normal distribution, then 7 itself follows
the so-called log-normal distribution (see http://en.wikipedia.org/wiki/Log normal).

One may also write the final size of the colony as y = nou®(1/u)¥ =% = ngu?*~", where x is the random
variable giving the number of successes in N Bernoulli trials; & will in general follow the binomial distribution
with mean g = Np = N/2 and variance 02 = npg = N/4, but for large N this converges to the normal
distribution with the same mean and variance.

Use the conservation of probability formula:

Ip(y)dy| = |p(z)dz|

to get:
dx
ply) = @p(x)

Solve the expression y = nou?*~ for x:

1 N
= og (y/no) + 2
2logu 2

Take the derivative:
dx 1

@ - 2ylogu

We know that p(z) is the probability density of the normal distribution with mean p = N/2 and variance
0% = N/4:

So we have p(y) = g—;p(x), which becomes, with everything plugged in:

2
1 - (1og n%)
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Note that this is the probability density function of the log-normal distribution with mean p = log(ng) and
variance 02 = N (logu)?.



