
Homework 3 – February 15, 2006 Solution prepared by Tobin Fricke
Physics 402 – Probability Prof. S.G. Rajeev, Univ. of Rochester

7.1. Waiting times in a Poisson Process A Geiger counter emits a click each time a radioactive decay
happens. If the average number of decays in unit time is λ, what is the proability distribution of the time
interval between clicks?

The decay of a bulk quantity of radioactive material is one example of a Poisson process. For a Poisson
process, we expect the number of events occuring in a unit time interval to follow the Poisson distribution,
p[k events in unit time] = eλλk/k!, where λ is the expected number of events in the unit time interval. This
must old for any notion of a “unit time interval,” so we may interpret λ as the rate of events. The distribution
of number of events occurring in an arbitrary time duration t is therefore also Poisson, with parameter λt.
The probability of receiving exactly k events in a time interval t is therefore p[Nt = k] = exp(−λt)(λt)k/k!.

The condition of having a waiting time T until the first event is equivalent to having exactly zero events
in time NT followed by exactly one event in the following time dt. For a poisson process, the probability of
getting an event in an interval [t, t + dt] is λdt. Consequently the probability distribution of waiting times is
p[Nt = 0]λdt = exp(−λt)λdt. The probability density of waiting times is therefore λ exp(−λt) .

Note that this integrates to unity over the range t ∈ (0,∞).

We may also solve for the probability density of waiting times by writing and then solving an integral relation.
Let p(t)dt be the probability that the waiting time is in [t, t+dt]. Then

∫ t

0
p(t′)dt′ is the probability that

the waiting time is less than t. Subtract this from unity to get the probability that the waiting time is at
least t, 1 −

∫ t

0
p(t′)dt′. Consider the probability that the waiting time is at least t and an event happens in

the following time interval dt; these are independent events, so we may just multiply by the probability λdt
of an event occurring in a duration dt. We’ve recovered an expression for the probability that the waiting
time is between t and t + dt, giving us the integral relation:(

1−
∫ t

0

p(t′)dt′
)

λ��dt = p(t)��dt

We can begin to solve this by taking the derivative with respect to t. Note that
∫ t

0
f(t′)dt′ = F (t)−F (0),

where F ′(t) = f(t), so (d/dt)
∫ t

0
f(t′)dt′ = f(t). We get:

p′(t) =
d

dt

(
1−

∫ t

0

p(t′)dt′
)

λ = −λp(t)

This has the well-known solution

p(t) = Ce−λt

where C is some constant. The normalization requirement
∫∞
0

p(t)dt = 1 gives us

p(t) = λe−λt

which agrees with what we found earlier.

7.2. Nearest neighbor distances between randomly spaced points Assume that homes in thep rarie
are distributed uinformly with an average density of n per square mile. What is the probability distribution
of the distance to the nearest neighbor from a given home? What is the average distance between nearest
neighbors?
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This question is similar to 7.1 above; instead of a “waiting time” until the next event after some arbitrary
starting time, we’re interested in the “waiting distance” as we travel radially outward from a given point
until we encounter another house.

Approaching this using the integral relation technique, we may write(
1−

∫ r

0

p(r′)dr′
)

2πrndr = p(r)dr

where the density n fills the role of λ in the one-dimensional case.
Requiring that p(0) = 0 and

∫∞
0

p(r)dr = 1 (note the lower limit of integration; the probability of a
negative waiting time is zero), we find

p(r) = 2πnr exp{−nπr2}

The average nearest-neighbor distance is given by

〈rnearest neighbor〉 =
∫ ∞

0

rp(r)dr =
1

2
√

n

8. Transformation of Random Variables
There is a nice explanation of this in Numerical Recipes in C, chapter 7.2. The text is available freely at

http://www.library.cornell.edu/nr/bookcpdf/c7-2.pdf.
We employ conservation of probability: |py(y)dy| = |px(x)dx|. We are given that the probability density

of x is uniform, i.e. px(x) = 1, and we are given several desired probability densities py. The procedure is
to solve for the derivative dx/dy, obtain x in terms of y by integrating, and then invert the relation to get
y in terms of x.

|py(y)dy| = |px(x)dx|
dx

dy
= ±py(y)

x =
∫

dx

dy
dy = ±

∫
py(y)dy

The following Mathematica code peforms this procedure for py(y) = −e−y:

py[y_] := -Exp[-y]
Solve[x==Integrate[py[y],y],y]

We find that y1(x) = − log(x), y2(x) = erf−1(2x− 1), and y3(x) = tan(πx).

9. Multiplicative Random Walk Consider the following simple model for the size of a colony of bacteria.
We start with a number n0; in each generation the number can be either multiplied by a factor u with
probability 1/2 or divided by the same number with the same probability. What is the probability distribution
of the number of bacteria after a large number N of steps? The number u is near unity.

If η is the random variable giving the population of the colony after many steps,then we may write η as
a product over many random variables ηi each of which may attain the values u and 1/u, describing how
the size of the colony changes in the ith step:

η = η1η2η3 · · · ηN

If we take the logarithm, then the product is converted into a sum:
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log η = log η1 + log η2 + log η3 + · · · log |etaN

The central limit theorem tells us that the sum of many independent random variables will have a
normal (Gaussian) distribution. If the logarithm of η follows the normal distribution, then η itself follows
the so-called log-normal distribution (see http://en.wikipedia.org/wiki/Log normal).

One may also write the final size of the colony as y = n0u
x(1/u)N−k = n0u

2x−N , where x is the random
variable giving the number of successes in N Bernoulli trials; k will in general follow the binomial distribution
with mean µ = Np = N/2 and variance σ2 = npq = N/4, but for large N this converges to the normal
distribution with the same mean and variance.

Use the conservation of probability formula:

|p(y)dy| = |p(x)dx|

to get:

p(y) =
dx

dy
p(x)

Solve the expression y = n0u
2x−N for x:

x =
log (y/n0)

2 log u
+

N

2

Take the derivative:
dx

dy
=

1
2y log u

We know that p(x) is the probability density of the normal distribution with mean µ = N/2 and variance
σ2 = N/4:

p(x) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
=

√
2

πN
exp

{
− (N − 2x)2

2N

}
=

√
2

πN
exp

−
−

(
log y

n0

)2

2N(log u)2


So we have p(y) = dx

dy p(x), which becomes, with everything plugged in:

p(y) =
1

y(log u)
√

2πN
exp

−
−

(
log y

n0

)2

2N(log u)2


Note that this is the probability density function of the log-normal distribution with mean µ = log(n0) and
variance σ2 = N(log u)2.
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