1. Moments of the Poisson distribution. The mean of a discrete random variable ξ is calculated as $\langle\xi\rangle=\sum k P[\xi=k]$ where the sum is over all possible values k the random variable may attain. For a random variable ξ with Poisson distribution with parameter λ, the probability mass function is $P[\xi=k]=$ $\left(\lambda^{k} / k!\right) \exp (k)$.

$$
\langle\xi\rangle=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!}=e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}=e^{-\lambda} \lambda \sum_{k^{\prime}=0}^{\infty} \frac{\lambda^{k^{\prime}}}{k^{\prime}!}=e^{-\lambda} e^{\lambda} \lambda=\lambda
$$

Instead of directly calculating $\sigma^{2}=\left\langle(\xi-\langle\xi\rangle)^{2}\right\rangle=\left\langle\xi^{2}\right\rangle-\langle\xi\rangle^{2}$ or even $\left\langle\xi^{2}\right\rangle$, it is easiest to first compute $\langle\xi(\xi-1)\rangle=\left\langle\xi^{2}\right\rangle-\langle\xi\rangle$, following a trick similar to the above:

$$
\langle\xi(\xi-1)\rangle=\sum_{k=0}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}=e^{-\lambda} \lambda^{2} \sum_{k^{\prime}=0}^{\infty} \frac{\lambda^{k^{\prime}}}{k^{\prime}!}=e^{-\lambda} e^{\lambda} \lambda^{2}=\lambda^{2}
$$

Using $\langle\xi(\xi-1)\rangle=\lambda^{2}$ and $\langle\xi\rangle=\lambda$ we can find the variance σ^{2} :

$$
\sigma^{2}=\left\langle\xi^{2}\right\rangle-\langle\xi\rangle^{2}=\langle\xi(\xi-1)\rangle+\langle\xi\rangle-\langle\xi\rangle^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda \Longrightarrow \sigma=\sqrt{\lambda}
$$

The same trick works for the computation of $\left\langle\xi^{3}\right\rangle$ (the "third moment" of the distribution):

$$
\begin{gathered}
\langle\xi(\xi-1)(\xi-2)\rangle=\sum_{k=0}^{\infty} k(k-1)(k-2) \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \lambda^{3} \sum_{k=2}^{\infty} \frac{\lambda^{k-3}}{(k-3)!}=e^{-\lambda} \lambda^{3} \sum_{k^{\prime}=0}^{\infty} \frac{\lambda^{k^{\prime}}}{k^{\prime}!}=\lambda^{3} \\
\left\langle\xi^{3}\right\rangle=\langle\xi(\xi-1)(\xi-2)\rangle+3\left\langle\xi^{2}\right\rangle-2\langle\xi\rangle=\lambda^{3}+3\left(\sigma^{2}+\langle\xi\rangle^{2}\right)-2\langle\xi\rangle=\lambda^{3}+3\left(\lambda+\lambda^{2}\right)-2 \lambda=\lambda^{3}+3 \lambda^{2}+\lambda
\end{gathered}
$$

Aside: We will see later that, for a random variable ξ, we can define a function $f_{\xi}(t)$ called ξ 's characteristic function that is the Fourier transform of its probability distribution, $f_{\xi}(t)=\langle\exp \{i t \xi\}\rangle$. Given this function, it turns out that we may easily compute the nth moment $\left\langle\xi^{n}\right\rangle$ of ξ as $\left\langle\xi^{n}\right\rangle=\left.\left(1 / i^{n}\right)\left(\partial^{n} / \partial t^{n}\right) f_{\xi}(t)\right|_{t=0}$. For a random variable ξ with Poisson distribution, one can find $f_{\xi}(t)=\exp \{\lambda(\exp (i t)-1)\}$. The following Mathematica code computes the characteristic function and uses it to generate a table of moments:

```
p[k_] := Exp[-\[Lambda]] \[Lambda]^k / Factorial[k]
f[t_] = Sum[Exp[I k t] p[k], {k, 0, Infinity}]
Table[\{\[LeftAngleBracket] \[Xi]^n\[RightAngleBracket], \(\mathrm{I}^{\wedge}(-\mathrm{n}) \mathrm{D}[\mathrm{f}[\mathrm{t}],\{\mathrm{t}, \mathrm{n}\}] / . \mathrm{t}-\mathrm{O} 0 / /\) Expand\}, \{n, 1, 4\}] // TableForm
```

2. Convergence of the binomial distribution to the Poisson distribution. For a random variable ξ with Binomial distribution, given N trials and probabilities p and $q=(1-p)$ for success and failure, the probability of exactly k successes is:

$$
\begin{gathered}
P[\xi=k]=\binom{N}{k} p^{k} q^{N-k} \\
P[\xi=k]=\frac{N!}{(N-k)!k!} p^{k}(1-p)^{N-k} \\
P[\xi=k]=\frac{N(N-1)(N-2) \cdots(N-k+1)}{k!} p^{k}(1-p)^{N-k}
\end{gathered}
$$

Notice that there are k terms in the denominator of the leading fraction. Divide the top and bottom by N^{k} :

$$
\begin{gathered}
P[\xi=k]=N^{k} \frac{N}{N} \frac{N-1}{N} \frac{N-2}{N} \cdots \frac{N-k+1}{N} \frac{1}{k!} p^{k}(1-p)^{N-k} \\
P[\xi=k]=\frac{N^{k} p^{k}}{k!}\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k-1}{N}\right)(1-p)^{N-k}
\end{gathered}
$$

We write p in terms of the number of expected successes, $p=\lambda / N$:

$$
P[\xi=k]=\frac{\lambda^{k}}{k!}\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k-1}{N}\right)\left(1-\frac{\lambda}{N}\right)^{N-k}
$$

To show convergence to the Poisson distribution, we take the limit $N \rightarrow \infty$. We'll need the identity $\lim _{N \rightarrow \infty}(1-\lambda / N)^{N} \rightarrow \exp (-\lambda)$, which we may derive:

$$
\lim _{N \rightarrow \infty}\left(1+\frac{\lambda}{N}\right)^{N}=\lim _{N \rightarrow \infty} \sum_{k=0}^{N}\binom{N}{k}\left(\frac{\lambda}{N}\right)^{k}=\lim _{N \rightarrow \infty} \sum_{k=0}^{N}\left(\prod_{i=0}^{k-1} \frac{N-i}{N}\right) \frac{\lambda^{k}}{k!}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{\lambda}
$$

Our expression for $P[\xi=k]$ was:

$$
P[\xi=k]=\frac{\lambda^{k} e^{-\lambda}}{k!}\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k-1}{N}\right)\left(1-\frac{\lambda}{N}\right)^{N-k}
$$

In the limit $N \rightarrow \infty$ all of the $(1-\cdot / N)$ terms will go to unity and the final term will go to $\exp (-\lambda)$ as we just saw, and we obtain the familiar Poisson distribution:

$$
\lim _{N \rightarrow \infty, N p \rightarrow \lambda} P[\xi=k]=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

We are, however, interested in quantifying the error when we use the Poisson distribution to approximate a Binomial distribution with "large" N. First we must also expand the $(1-\lambda / N)^{N}$ term in powers of N:

$$
\left(1-\frac{\lambda}{N}\right)^{N-k}=\exp \left\{(N-k) \log \left[1-\frac{\lambda}{N}\right]\right\}
$$

Expand $\log (1-x)$ in a power series about $x_{0}=1$:

$$
\log (1-x)=-\sum_{j=1}^{\infty} \frac{x^{j}}{j}=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots
$$

Using that expansion:

$$
\left(1-\frac{\lambda}{N}\right)^{N-k}=\exp \left\{-(N-k) \sum_{j=1}^{\infty} \frac{1}{j}\left(\frac{\lambda}{N}\right)^{j}\right\}
$$

Working out the term in curly braces:

$$
\begin{aligned}
-(N-k) \sum_{j=1}^{\infty} \frac{1}{j}\left(\frac{\lambda}{N}\right)^{j} & =-\sum_{j^{\prime}=0}^{\infty} \frac{1}{j^{\prime}+1} \frac{\lambda^{j^{\prime}+1}}{N^{j^{\prime}}}+\sum_{j=1}^{\infty} \frac{k}{j} \frac{\lambda^{j}}{N^{j}}=-\lambda-\sum_{j=1}^{\infty}\left(\frac{\lambda}{N}\right)^{j}\left(\frac{\lambda}{j+1}-\frac{k}{j}\right) \\
& =-\lambda+\frac{k \lambda}{N}+\frac{k \lambda^{2}}{2 N^{2}}-\frac{\lambda^{2}}{2 N}-\frac{\lambda^{3}}{3 N^{2}}+\cdots \\
\left(1-\frac{\lambda}{N}\right)^{N-k} & =\exp (-\lambda) \exp \left\{\frac{k \lambda}{N}+\frac{k \lambda^{2}}{2 N^{2}}-\frac{\lambda^{2}}{2 N}-\frac{\lambda^{3}}{3 N^{2}}+\cdots\right\}
\end{aligned}
$$

Putting everything together, we have:

$$
P[\xi=k]=\frac{\lambda^{k} e^{-\lambda}}{k!}\left(\prod_{i=0}^{k-1}\left(1-\frac{i}{N}\right)\right) \exp \left\{\frac{k \lambda}{N}+\frac{k \lambda^{2}}{2 N^{2}}-\frac{\lambda^{2}}{2 N}-\frac{\lambda^{3}}{3 N^{2}}+\cdots\right\}
$$

We can expand the exponential, too, as a power series about 0 , and we may group the series by powers of $1 / N$. Expanding the product in the middle expression and multiplying by this power series will result in another series in powers of $1 / N$. To first order, we will see that the estimate is correct. The next term, in $1 / N$ is the first error term. Therefore the error of our estimate is of order $1 / N$.
3. The Stirling Approximation. The Stirling approximation (in one form) is:

$$
n!\approx n^{n} e^{-n} \sqrt{n} \sqrt{2 \pi}
$$

This bit of Mathematica produces a decent table:

```
stirling[n_] := n^n Exp[-n] Sqrt[n] Sqrt[2 Pi]
Table[{n, N[Factorial[n]], N[stirling[n]],
    N[stirling[n]/Factorial[n] - 1]}, {n, 1, 20}] // TableForm
```

n	$n!$	$n^{n} e^{-n} \sqrt{n} \sqrt{2 \pi}$	relative error
1	1.	0.922137	-0.077863
2	2.	1.919	-0.0404978
3	6.	23.5621	-0.0272984
4	24.	118.019	-0.020576
5	120.	710.078	-0.0165069
6	720.	-0.0137803	
7	5040.	39902.4	-0.0118262
8	40320.	359537.	-0.0103573
9	362880.	3.5987×10^{6}	-0.00821276
10	3.6288×10^{6}	3596	
11	3.99168×10^{7}	3.96156×10^{7}	-0.00754507
12	4.79002×10^{8}	4.75687×10^{8}	-0.00691879
13	6.22702×10^{9}	6.18724×10^{9}	-0.0063885
14	8.71783×10^{10}	8.6661×10^{10}	-0.0059337
15	1.30767×10^{12}	1.30043×10^{12}	-0.00553933
16	2.09228×10^{13}	2.08141×10^{13}	-0.00519412
17	3.55687×10^{14}	3.53948×10^{14}	-0.0048894
18	6.40237×10^{15}	6.3728×10^{15}	-0.00461846
19	1.21645×10^{17}	1.21113×10^{17}	-0.00437596
20	2.4329×10^{18}	2.42279×10^{18}	-0.00415765

This form of the Stirling approximation is very accurate. Its accuracy is better than 10% for $n \geq 1$ and better than 1% for $n \geq 9$. The worst error, at $n=1$ is about 7.8%. In this form, the approximation is indeterminate for $n=0$, since the approximation involves an n^{n} term.

In thermodynamics and statistical mechanics, it is common to use a 'Stirling' approximation for $\log (n!)$:

$$
\log (n!) \approx(n \log n)-n
$$

