
Homework 1 – February 1, 2006 Solution prepared by Tobin Fricke
Physics 402 – Probability Prof. S.G. Rajeev, Univ. of Rochester

1. Moments of the Poisson distribution. The mean of a discrete random variable ξ is calculated as
〈ξ〉 =

∑
kP [ξ = k] where the sum is over all possible values k the random variable may attain. For a

random variable ξ with Poisson distribution with parameter λ, the probability mass function is P [ξ = k] =
(λk/k!) exp(k).
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∞∑
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Instead of directly calculating σ2 =
〈
(ξ − 〈ξ〉)2

〉
= 〈ξ2〉 − 〈ξ〉2 or even 〈ξ2〉, it is easiest to first compute

〈ξ(ξ − 1)〉 = 〈ξ2〉 − 〈ξ〉, following a trick similar to the above:
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Using 〈ξ(ξ − 1)〉 = λ2 and 〈ξ〉 = λ we can find the variance σ2:

σ2 = 〈ξ2〉 − 〈ξ〉2 = 〈ξ(ξ − 1)〉+ 〈ξ〉 − 〈ξ〉2 = λ2 + λ− λ2 = λ =⇒ σ =
√

λ

The same trick works for the computation of 〈ξ3〉 (the “third moment” of the distribution):

〈ξ(ξ − 1)(ξ − 2)〉 =
∞∑

k=0

k(k − 1)(k − 2)
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k!
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∞∑
k=2

λk−3

(k − 3)!
= e−λλ3

∞∑
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λk′
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〈
ξ3
〉

= 〈ξ(ξ − 1)(ξ − 2)〉+ 3〈ξ2〉 − 2〈ξ〉 = λ3 + 3
(
σ2 + 〈ξ〉2

)
− 2〈ξ〉 = λ3 + 3

(
λ + λ2

)
− 2λ = λ3 + 3λ2 + λ

Aside: We will see later that, for a random variable ξ, we can define a function fξ(t) called ξ’s characteristic
function that is the Fourier transform of its probability distribution, fξ(t) = 〈exp{itξ}〉. Given this function,
it turns out that we may easily compute the nth moment 〈ξn〉 of ξ as 〈ξn〉 = (1/in)(∂n/∂tn)fξ(t)|t=0. For
a random variable ξ with Poisson distribution, one can find fξ(t) = exp {λ (exp(it)− 1)}. The following
Mathematica code computes the characteristic function and uses it to generate a table of moments:

p[k_] := Exp[-\[Lambda]] \[Lambda]^k / Factorial[k]

f[t_] = Sum[Exp[I k t] p[k], {k, 0, Infinity}]

Table[{\[LeftAngleBracket]\[Xi]^n\[RightAngleBracket],
I^(-n) D[f[t], {t, n}] /. t -> 0 // Expand}, {n, 1, 4}] // TableForm
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2. Convergence of the binomial distribution to the Poisson distribution. For a random variable
ξ with Binomial distribution, given N trials and probabilities p and q = (1− p) for success and failure, the
probability of exactly k successes is:

P [ξ = k] =
(

N

k

)
pkqN−k
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N !

(N − k)!k!
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k!
pk(1− p)N−k

Notice that there are k terms in the denominator of the leading fraction. Divide the top and bottom by
Nk:

P [ξ = k] = Nk N
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We write p in terms of the number of expected successes, p = λ/N :

P [ξ = k] =
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To show convergence to the Poisson distribution, we take the limit N → ∞. We’ll need the identity
limN→∞ (1− λ/N)N → exp(−λ), which we may derive:
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Our expression for P [ξ = k] was:

P [ξ = k] =
λke−λ
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In the limit N →∞ all of the (1− ·/N) terms will go to unity and the final term will go to exp(−λ) as
we just saw, and we obtain the familiar Poisson distribution:

lim
N→∞,Np→λ

P [ξ = k] =
λke−λ

k!

We are, however, interested in quantifying the error when we use the Poisson distribution to approximate a
Binomial distribution with “large” N . First we must also expand the (1− λ/N)N term in powers of N:(

1− λ

N

)N−k

= exp
{

(N − k) log
[
1− λ

N

]}
Expand log(1− x) in a power series about x0 = 1:

log(1− x) = −
∞∑

j=1

xj

j
= −x− x2

2
− x3

3
− · · ·

Using that expansion:
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Working out the term in curly braces:
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}
Putting everything together, we have:

P [ξ = k] =
λke−λ

k!

(
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i=0
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N
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+ · · ·

}
We can expand the exponential, too, as a power series about 0, and we may group the series by powers

of 1/N . Expanding the product in the middle expression and multiplying by this power series will result in
another series in powers of 1/N . To first order, we will see that the estimate is correct. The next term, in
1/N is the first error term. Therefore the error of our estimate is of order 1/N .
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3. The Stirling Approximation. The Stirling approximation (in one form) is:

n! ≈ nne−n
√

n
√

2π

This bit of Mathematica produces a decent table:

stirling[n_] := n^n Exp[-n] Sqrt[n] Sqrt[2 Pi]

Table[{n, N[Factorial[n]], N[stirling[n]],
N[stirling[n]/Factorial[n] - 1]}, {n, 1, 20}] // TableForm

n n! nne−n
√

n
√

2π relative error
1 1. 0.922137 −0.077863
2 2. 1.919 −0.0404978
3 6. 5.83621 −0.0272984
4 24. 23.5062 −0.020576
5 120. 118.019 −0.0165069
6 720. 710.078 −0.0137803
7 5040. 4980.4 −0.0118262
8 40320. 39902.4 −0.0103573
9 362880. 359537. −0.00921276
10 3.6288× 106 3.5987× 106 −0.00829596
11 3.99168× 107 3.96156× 107 −0.00754507
12 4.79002× 108 4.75687× 108 −0.00691879
13 6.22702× 109 6.18724× 109 −0.0063885
14 8.71783× 1010 8.6661× 1010 −0.0059337
15 1.30767× 1012 1.30043× 1012 −0.00553933
16 2.09228× 1013 2.08141× 1013 −0.00519412
17 3.55687× 1014 3.53948× 1014 −0.0048894
18 6.40237× 1015 6.3728× 1015 −0.00461846
19 1.21645× 1017 1.21113× 1017 −0.00437596
20 2.4329× 1018 2.42279× 1018 −0.00415765

This form of the Stirling approximation is very accurate. Its accuracy is better than 10% for n ≥ 1 and
better than 1% for n ≥ 9. The worst error, at n = 1 is about 7.8%. In this form, the approximation is
indeterminate for n = 0, since the approximation involves an nn term.

In thermodynamics and statistical mechanics, it is common to use a ‘Stirling’ approximation for log(n!):

log(n!) ≈ (n log n)− n

.
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