Homework 1 — February 1, 2006 Solution prepared by Tobin Fricke
Physics 402 — Probability Prof. S.G. Rajeev, Univ. of Rochester

1. Moments of the Poisson distribution. The mean of a discrete random variable £ is calculated as
(&) = Y kP[¢ = k] where the sum is over all possible values k the random variable may attain. For a

random variable £ with Poisson distribution with parameter A, the probability mass function is P[§ = k] =
(AF/k!) exp(k).
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Instead of directly calculating 02 = <(§ — <£>)2> = (£2) — (£)? or even (£2), it is easiest to first compute
(E(€ — 1)) = (£%) — (¢), following a trick similar to the above:
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Using (£(€ — 1)) = A% and (£) = A we can find the variance o2:
0 = () (= (-1 +{E -’ =N +A-N =) = [0=V]
The same trick works for the computation of (£3) (the “third moment” of the distribution):
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Aside: We will see later that, for a random variable &, we can define a function f¢(t) called {’s characteristic
function that is the Fourier transform of its probability distribution, fe(t) = (exp{it€}). Given this function,
it turns out that we may easily compute the nth moment (£") of  as (§") = (1/i™)(0"/0t") fe(t)|t=0. For
a random variable & with Poisson distribution, one can find fe(t) = exp {A (exp(it) — 1)}. The following
Mathematica code computes the characteristic function and uses it to generate a table of moments:
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plk_] := Exp[-\[Lambdal] \[Lambda] "k / Factorial[k]
flt_] = Sum[Exp[I k t] plk], {k, O, Infinity}]

Table[{\[LeftAngleBracket]\[Xi] "n\ [RightAngleBracket],
I"(-n) D[£[t], {t, n}] /. t -> O // Expand}, {n, 1, 4}] // TableForm



2. Convergence of the binomial distribution to the Poisson distribution. For a random variable
¢ with Binomial distribution, given N trials and probabilities p and ¢ = (1 — p) for success and failure, the
probability of exactly k successes is:
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Notice that there are k terms in the denominator of the leading fraction. Divide the top and bottom by
Nk:
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We write p in terms of the number of expected successes, p = \/N:
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To show convergence to the Poisson distribution, we take the limit N — oo. We'll need the identity
limpy_ 00 (1 = A/N)" — exp(—A), which we may derive:
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Our expression for P[§ = k] was:
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In the limit N — oo all of the (1 — -/N) terms will go to unity and the final term will go to exp(—\) as
we just saw, and we obtain the familiar Poisson distribution:

We are, however, interested in quantifying the error when we use the Poisson distribution to approximate a
Binomial distribution with “large” N. First we must also expand the (1 — A/N)® term in powers of N:
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Expand log(1 — x) in a power series about zy = 1:
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Using that expansion:
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Working out the term in curly braces:
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Putting everything together, we have:
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We can expand the exponential, too, as a power series about 0, and we may group the series by powers
of 1/N. Expanding the product in the middle expression and multiplying by this power series will result in
another series in powers of 1/N. To first order, we will see that the estimate is correct. The next term, in
1/N is the first error term. Therefore the error of our estimate is of order 1/N.



3. The Stirling Approximation. The Stirling approximation (in one form) is:
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This bit of Mathematica produces a decent table:

stirling[n_] := n"n Exp[-n] Sqrt[n] Sqrt[2 Pil

Table[{n, N[Factorial[n]], N[stirling[n]],
N[stirling[n]/Factorial[n] - 11}, {n, 1, 20}] // TableForm

n | nl ne "/ny/2m | relative error
1 |1 0.922137 —0.077863

2 |2 1.919 —0.0404978
3 |6. 5.83621 —0.0272984
4 | 24. 23.5062 —0.020576

5 | 120. 118.019 —0.0165069
6 | 720. 710.078 —0.0137803
7 | 5040. 4980.4 —0.0118262
8 | 40320. 39902.4 —0.0103573
9 | 362880. 359537. —0.00921276
10 | 3.6288 x 10° 3.5987 x 108 —0.00829596
11 | 3.99168 x 107 | 3.96156 x 107 | —0.00754507
12 | 4.79002 x 10% | 4.75687 x 10% | —0.00691879
13 | 6.22702 x 10° | 6.18724 x 10° | —0.0063885
14 | 8.71783 x 10'° | 8.6661 x 10'° | —0.0059337
15 | 1.30767 x 10'2 | 1.30043 x 10'? | —0.00553933
16 | 2.09228 x 103 | 2.08141 x 10'3 | —0.00519412
17 | 3.55687 x 10™ | 3.53948 x 10'* | —0.0048894
18 | 6.40237 x 10 | 6.3728 x 10'® | —0.00461846
19 | 1.21645 x 10'7 | 1.21113 x 10'7 | —0.00437596
20 | 2.4329 x 108 | 2.42279 x 10™® | —0.00415765

This form of the Stirling approximation is very accurate. Its accuracy is better than 10% for n > 1 and
better than 1% for n > 9. The worst error, at n = 1 is about 7.8%. In this form, the approximation is
indeterminate for n = 0, since the approximation involves an n™ term.

In thermodynamics and statistical mechanics, it is common to use a ‘Stirling’ approximation for log(n!):

llog(n!) ~ (nlogn) — n‘




