Physics 142 – Fall 2007 – Workshop module 9

1. Quickly review the concept of electromagnetic induction. Break up into 3 groups if possible. Create two problems for the rest of the class to figure out … be tricky! Each group should go to the board and present their problems for the class to discuss.

 Group 1 should consider two circular loops lying next to each other in a plane. Current of either charge flows with a time-dependence in either direction in one of the loops. What is the direction of the induced current in the other loop?

 Group 2 should do the same … except the two loops in this case are not in the same plane, rather they are coaxial with one lying near the other … like two rings on one finger.

 Group 3 should consider a long, straight current carrying wire with a time–dependent current of either charge going in either direction. Near, but not encircling, this wire they should place a circular conducting loop … in ANY orientation. What is the direction of the induced current in the loop?

2. In the figure below, a rod with length $L=0.0650 \text{ m}$ moves in a magnetic field with a magnitude $B=1.20 \text{ T}$. The emf induced in the moving rod is 0.320 V. a) What is the speed of the rod? b) If the total circuit resistance is 0.800 Ohms, what is the induced current? c) What force (magnitude and direction) does the field exert on the rod as a result of this current? Can you think of different ways to explain the existence of this force?

![Image of a rod moving in a magnetic field]

3. Two closely wound circular coils have the same number of turns, but one has twice the radius of the other. How are the self-inductances of the two coils related?

4. Two coils are wound on the same form so that the magnetic field from one coil produces flux through the turns of the second coil. When the current in the first coil is decreasing at a rate of -0.0850 A/s, the induced emf in the second coil has magnitude $7.3 \times 10^{-3} \text{ V}$. a) What is the mutual inductance of the pair of coils? B) If the second coil has five turns, what is the flux through each turn when the current in the first coil equals 1.60 A? c) If the current in the second coil increases at a rate of 0.0500 A/s, what is the induced emf in the first coil?

5. Attached are problems from a physics 114 exam given in 2006. This exam has significant overlap with the material you are responsible for on exam 2. Work through these problems as a group to help you prepare for exam 2 on Thursday.
Problem 1 (10 pts, must give brief justification):

Two parallel wires carry current in the same direction. Wire 1 carries a current I_1. Wire 2 carries a current $I_2=2I_1$. What is the relationship of the magnitudes of the forces on the two wires?

- a) $F_1=F_2$
- b) $F_1=2F_2$
- c) $2F_1=F_2$
- d) $F_1=4F_2$
- e) $4F_1=F_2$

Problem 2 (20 pts, no justification necessary):

Please indicate on each sketch the direction of the force on the positively charged particle moving with velocity v. All vectors shown are in the plane of the paper except for the B field in part (a), where B is into the paper. There is no need for justification for this problem.

(a) X X X X X B
 X X X X X
 X X X X X
 X X X X

(b) \vec{v}
 \vec{B}
 \vec{v}

(c) \vec{v}
 \vec{B}

(d) \vec{v}

(e) \vec{v} is inside current loop with i in direction shown.
 Both motion of \vec{v} and current loop are in plane of paper.
Problem 3 (20 pts, show all work):

(a) Determine the potential difference between points X and Y in the circuit below.

(b) Which point, X or Y, is at the higher potential? If you think both points are at the same potential, state that along with your reasoning.
Problem 4 (15 pts, give brief justification):

Two identical capacitors, A and B, are connected in parallel across the same battery. If mica (K=5.4) is inserted in B,

a) both capacitors will retain the same charge.
b) B will have the larger charge.
c) A will have the larger charge.
d) The potential difference across B will increase.
e) The potential difference across A will increase.

After the insertion of the mica, how will the energy stored in the two capacitors compared to the energy stored in the system before the mica was inserted? Explain your answer.

Problem 5 (15 pts, show all work):

A heart pacemaker fires 72 times a minute. The timing is determined by an RC circuit. The pacemaker fires every time that a 0.25 nF capacitor is charged to 0.632 of its full voltage (or charge). What is the value of the resistance in the circuit? (Note that 1/e is equal to 0.368.)
Problem 6 (20 pts, show all work):

A wire lies parallel to a conducting pipe of radius R and thickness \(\frac{1}{4} R \). The wire lies at a distance of 3R from the center of the pipe. The wire and pipe are configured perpendicular to the paper, as shown below in a sketch. The pipe carries a uniform current of magnitude I directed into the paper. The current is in the region shown. That is to say, the interior of the pipe \((r<\frac{3}{4}/R)\) is empty and carries no current.

(a) Determine the magnitude and direction of current in the wire which will cause the magnetic field at point P to be zero.

(b) Given your answer to part (a), what is the magnitude and direction of the magnetic field at the center of the current-carrying pipe?