Physics 142 - November 1, 2007

Exams 2 one week from today
- in Hoyt
- reg. class time
- welcome to bring formula sheet as last time
- will try to set up a Q&A session

To be covered:

Topics
- Potential
- Capacitance
- Energy in E
- E in materials
dielectrics
Kirchhoff's Rules
DC circuits with R, RC
Special Relativity
Lorentz Force Law
Biot-Savart
Ampere's Law

Lectures
- Sept 27 - Oct 30

Problem Sets
- 4-7

Workshops
- 4-8

Chapters
- 25-30, 36
Induction

\[\nabla \times \mathbf{B} = \text{constant} \]

Magnetostatics

Kirkhoff

\[\oint \mathbf{E} \cdot d\mathbf{l} = 0 \]

Closed loop

Statement of Kirkhoff's law in free space

Changing Magnetic Field

\[\varepsilon = \oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_m}{dt} \]

Induced EMF

Faraday's law

\[\Phi_m = \int \mathbf{B} \cdot d\mathbf{A} \]

True in free space

Materials

Wire
Lenz's Law - An induced current in a closed conducting loop will appear in such a way as to oppose the change that created it.

\[
i \text{ increasing with time}
\]

\[
\text{induce a counter-clockwise current in II}
\]
\[E = - \frac{d \Phi_m}{dt} = - \frac{d(BxI)}{dt} = -B \frac{dx}{dt} = -Blv \]

Loop has resistance \(R \) \(iI = \frac{Blv}{R} \)

\[v = iR \]
\[E = iR \]

Be sure to check out the "Induction" Java Applet on the class Website!
Solenoid - each turn has area A

$\mathbf{B} = \mu_0 n_i A$

$\Phi_m = B A = \mu_0 n_i A$

$\Phi_m \times i$

$\Phi_m = \mu_0 n_i A \times i$

length l of solenoid

$N L$ turns

$\Phi_m = \mu_0 n_i A \times i$

$\Phi_m \times i$

length l
\[\Phi_m = L_i \]

Constant of Self-inductance

change \(i \) \(\rightarrow \) change \(\Phi_m \) \(\rightarrow \) \(\frac{d\Phi_m}{dt} \) \(\rightarrow \) \(\mathcal{E} \)

\[\mathcal{E} = -\frac{d\Phi_m}{dt} = -L \frac{di}{dt} \]
\(\Delta i \) in \(\text{I} \)
\(\Delta B \) in \(\text{II} \)

\(\Phi_m \text{ in } \text{II} \propto i \)

\(\Phi_m \text{ in } \text{II} = LIi \)

Constant of Mutual Inductance
Energy + Magnetic Field

new circuit element → inductor

\[\sum \mathcal{E} = 0 \]

\[\mathcal{E} - iR - L \frac{di}{dt} = 0 \]

\[\mathcal{E} = iR + L \frac{di}{dt} \]

LR circuit

mult by \(i \)

\[\mathcal{E}i = i^2R + Li \frac{di}{dt} \]

Power

Energy going in or out of B field
\[\frac{dU_B}{dt} = L \frac{di}{dt} \]

\[dU_B = L \, di \]

\[U_B = \int_0^I L \, di = \frac{1}{2} L I^2 \]

Analogous: \(U \) in capacitor = \(\frac{1}{2} C V^2 \)

Solenoid with \(i \), \(n \) turns/\(\text{cm}^2 \), consider length \(l \)

\[\Rightarrow \text{find energy density of magnetic field} \]
\[B_{\text{solenoide}} = \mu_0 n i \quad \text{(inside)} \]
\[= 0 \quad \text{(outside)} \]

\[U_B = \text{Energy density in } B = \frac{U_B}{A l} \]

\[U_B = \frac{1}{2} Li^2 \]
\[\Phi_m = Li \quad L = \frac{Q_m}{i} = \frac{(BA)(nl)}{i} \quad \text{(geometry)} \]

\[L = \mu_0 n A \quad \text{nl} = \mu_0 n^2 A l \]

\[U_B = \frac{1}{2} \frac{\mu_0 n^2 A l i^2}{A l} = \frac{1}{2} \mu_0 i^2 n^2 = \frac{B^2}{2 \mu_0} \]
\[U_B = \frac{B^2}{2 \mu_0} \]

Energy density in magnetic field

Analogous to

\[U_E = \frac{\varepsilon_0 E^2}{2} \]