Physics 114 - Fall 2010 - Module 10

1. The energy flow to the earth associated with sunlight is about $1.4 \mathrm{~kW} / \mathrm{m}^{2}$. a) find the maximum values of E and B for a sinusoidal wave with this intensity. b) The distance from the earth to the sun is about $1.5 \times 10^{11} \mathrm{~m}$. Find the total power radiated by the sun.
2. A beam of light is a mixture of polarized light and unpolarized light. When it is sent through a Polaroid sheet (a linearly polarizing sheet), it is found that the transmitted intensity can be varied by a factor of five depending on the orientation of the Polaroid sheet. Find the relative intensities of the two components of the incident beam.
3. An electromagnetic wave has a frequency of 100 MHz and is traveling in a vacuum. The magnetic field is given by $\vec{B}(z, t)=\left(10^{-8} \mathrm{~T}\right) \cos (k z-\omega t) \hat{i}$
(a) find the wavelength and the direction of propagation of this wave
(b) find the electric field.
4. The radiation pressure from a laser beam supports a particle against the force of gravity. What power $654-\mathrm{nm}$ laser is necessary to support a perfectly reflecting spherical particle having a diameter of $10 \mu \mathrm{~m}$ and a density of $0.2 \mathrm{~g} / \mathrm{cm}^{3}$?
5. Two mirrors face each other across a square room. An infinite series of reflections can be seen. Why do the images that seem further away also seem dimmer?
6. An electromagnetic wave is described by

$$
\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \sin (\mathrm{kx}-\varpi \mathrm{t}) \hat{\mathrm{j}}+\mathrm{E}_{0} \cos (\mathrm{kx}-\varpi \mathrm{t}) \hat{\mathrm{k}}
$$

What direction does this wave propagate? What is the polarization of this wave?
Can you write an equation for a wave that has linear (circular) polarization? (Choose whichever you believe the equation above is *not*.

