Physics 114- April 20, 2010

Quantum Mechanics

1-d time independent Schrödunger equation - Potential energy function $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + U F(x) = E F(x)$ The Plug in U and Solve for E, 4 14/2 probability distribution for particle E = Allowed energy STARS for particle op Square potential discrete if potential is negative (force is attractive) U(x) $\frac{d^2 f(x)}{dx^2} = -\frac{2ME}{\hbar^2} \frac{f(x)}{h^2}$ U(x) = 0 for DZXZL U(x) = 00 for x <0, L <x

Max Planck (1858-1947) – 1918 Nobel Prize for work on spectral distribution of radiation (blackbody radiation)

Three of the players

Erwin Schrodinger (1887-1961) – Developed mathematical theory of wave mechanics that permitted the calculation of physical systems

Louis deBroglie (1892-1987) First suggested matter has wavelike properties

Earnest Rutherford (1871-1937) nuclear "plantetary" model of atom

Niels Bohr (1885-1962) developed a semi-classical nuclear model of the single electron atom

Time-independent Schrödinger equation $\frac{-h^{2}}{2m}\frac{\partial^{2}Y_{(x)}}{\partial x^{2}} + V(x)Y_{(x)} = EY_{(x)}$ $\frac{-h^{2}}{2m}\frac{\partial^{2}Y_{(x)}}{\partial x^{2}} + V(x)Y_{(x)} = EY_{(x)}$ Tot E $\frac{Y_{(x)}}{\sum} = Wave function of particle$ what is $\mathcal{Y}(x)$? /Y(x)/²dv = prob. of finding particle in volume dv $\int |\Psi(x)| \, dv = 1$ particle is someplace All SPACE Sub in V as appropriate + solve

for H Atom Musi generalized to 3d, spherical coordinates $V(r) \longrightarrow \frac{1}{4\pi\epsilon_0} \frac{191^2}{r^2} + Sohne$ $-\frac{h^2}{r^2}\left(\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial 4(r)}{\partial r}+\frac{1}{r^2}\frac{\partial^2 4(r)}{\partial \phi^2}+\frac{1}{r^2}\frac{\partial}{\partial \phi}\left(\frac{1}{r^2}\frac{\partial}{\partial \phi}r\right)\right)$ + $\frac{1}{4\pi\epsilon_0} \frac{1}{4} \frac{1}{1} \frac{1}{1} \frac{1}{4} \frac{1}{1} \frac{1}{1$ Now ... Solve

n	l	m_l	R(r)	$\Theta(\theta)$	$\Phi(\phi)$
1	0	0	$\frac{2}{a_0^{3/2}}e^{-r/a_0}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2\pi}}$
2	0	0	$\frac{1}{(2a_0)^{3/2}} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2\pi}}$
2	1	0	$\frac{1}{\sqrt{3}(2a_0)^{3/2}}\frac{r}{a_0}e^{-r/2a_0}$	$\sqrt{\frac{3}{2}}\cos\theta$	$\frac{1}{\sqrt{2\pi}}$
2	1	± 1	$\frac{1}{\sqrt{3}(2a_0)^{3/2}}\frac{r}{a_0}e^{-r/2a_0}$	$\frac{\sqrt{3}}{2}\sin\theta$	$\frac{1}{\sqrt{2\pi}}e^{\frac{1}{2\pi}}$

Probability distributions for several allowed atomic states for the 1-electron atom

Increasing n adds new radial layers, I=0 give spherical symmetry, I not 0 brings in angular dependence

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$\vec{F}_{z} = \frac{\partial B_{z}}{\partial z} | \vec{\mu}_{z} | = \frac{\partial B_{z}}{\partial z} m$$

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$\vec{F}_{z} = \frac{\partial B_{z}}{\partial z} | \vec{\mu}_{z} | = \frac{\partial B_{z}}{\partial z} m$$

SURPRISE! ... fundamental particle have an intrinsic magnetic moment. Call it spin.

$$\vec{F}_{z} = \frac{\partial B_{z}}{\partial z} | \vec{\mu}_{z} | = \frac{\partial B_{z}}{\partial z} m$$

Intrinsic spin - two varieties

Huge effect on multi-electron atoms Fermions = half integral spin, such as 1/2, 3/2, 5/2, ..., 73/2 ... protons, neutrons, electrons are all fermions (s=1/2) no two fermions can occupy the same exact quantum state

Bosons = integral spin, such as 0, 1, 2 ... photons (s=1) and pions (s=0) are examples of bosons bosons can occupy the same exact quantum state

Rules for Filling of state for multi-electron atom n, l, m_l, m_s

Spectroscopic notation - s: I=0, p: I=1, d: I=2, f: I=3, ...

> No two electrons in same state (Pauli exclusion)

Electrons go into the state with the lowest possible energy (Aufbau)

Within a sublevel, electrons will have their spin unpaired as much as possible (due to spin-spin interaction contribution to energy)

Kene	L shall	M shell	na na serie de la serie d'anne de la serie d'anne de la serie d
Energy (n) level 1	2	3	· · · ·
sublevel (1) 5	s P	15 '	р '' ·
Z=⊅G_	me-1 v	42=0 mg=11	
н <u>1</u>	1		- 15'
2 He 11	_ ! _		IS ²
3 Li <u>1</u> V	2 -	_ _	1 15225
" Be <u>16</u>	14 -		15225
5 B <u>1</u>	12 1	_ -	1525229
6 C <u>1v</u>	12 1	1	
A N IV	11 1 -	1 1	
8 0 12	11 11	11_	152522p
9 F <u>1v</u>		12 1	
10 Ne 11		11. 11.	
IN Na 14	1/ 1/ 1	L 1L 1	15252835
:			

Chemistry now "solved"

Magnetic Resonance

Consider a current loop in a B field p II = magnetic moment PE of system = - M.B Vs. pin 〒= Jux衣 in QM [Spin component up respect to an axis] guntized 25 Could be orbital spin or intrinsic Spin

If we define
$$\overline{B}$$
 to be along \widehat{Z}
 $U \equiv energy of interaction of \overline{\mu} = \overline{D}$
 $U = -\mu_Z B$
 $\overline{\mu} = -\frac{1}{2} \frac{e}{m} \overline{L}$
 $\overline{\mu} = -\frac{1}{2} \frac{e}{m} \overline{L}$
 $ereited on \overline{L}$
 $ereited on \overline{L}$

For
$$e^{-in}$$
 atom $l_3 = m_g t_h$
if $l = i$ $m_g = -i, 0, +i$
 $l_3 = -it, 0, +th$
 $M_3 = e^{-it} m_g$
 $M_3 = e^{-it} m_g$
 $M_3 = e^{-it} m_g$

