Physics 114-April 20, 2010

- Last class Next Tuesday
- Last problem set to hand in This Thursday
- Will give you selected problens/solns in last set of topics - Not for handing in.
- EXAM 3? Thursday I hope.

Quantum Mechanics
1-d time independent Schrödinger equation $-\hbar^{2} d^{2} \psi(x)+\widetilde{U} \psi(x)=E \psi(x)$ Potential energy function $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\widetilde{U}(x)=E \psi(x)$
$\sim_{\text {plug in } U}$ and solve for E, ψ
$|\psi|^{2} \approx$ probability distribution for pautide
$E \equiv$ Allowed energy STAtes for particle
suture poll pecten discrete it potential is negative (force is attractive)

$U(x)=0$ for $0<x<6$
$U(x)=\infty$ for $x<0, L<x$

Solve equ $\rightarrow \quad \psi(x)=A \sin k x+B \cos k x$
Boundary conditions $\rightarrow \quad \psi(0)=0, \psi(L)=0$

$$
\begin{aligned}
& \psi(x)=A \sin 2 x \\
& \searrow \text { Quentization } \\
& k_{n}=\frac{n \pi}{L} \\
& E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2} 2 m} \quad n=1,2,3 \ldots \\
& \psi_{n}(x)=A \sin \left(\frac{n \pi}{L} x\right) \quad n=1,2,3 \ldots
\end{aligned}
$$

Max Planck (1858-1947) - 1918 Nobel Prize for work on spectral distribution of radiation (blackbody radiation)

Louis deBroglie (1892-1987) First suggested matter has wavelike properties

Three of the players

Earnest Rutherford (1871-1937) nuclear "plantetary" model of atom

Niels Bohr (1885-1962) developed a semi-classical nuclear model of the single electron atom

Time -independent Schrodinger equation

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x_{R}^{2}}+V(x) \psi(x)=E \psi(x) \quad \text { Term PE Term } R \text { Tot }
$$

$\psi(x) \equiv$ Wave function of particle
what is $\psi(x)$?
$|\psi(x)|^{2} d v=$ prob. of finding particle in volume de

$$
\int_{\text {AlI }}\left|\psi_{1}(x)\right|^{2} d v=1 \text { particle is someplace }
$$

space
Sub in V as appropriate + solve
for H Atom
muss generalized to Sd, spherical coordinates

$$
\begin{aligned}
& V(r) \rightarrow \frac{1}{4 \pi \epsilon_{0}} \frac{|q|^{2}}{r^{2}}+\text { Solve } \\
& \frac{-\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \frac{r^{2} \frac{\partial(r)}{\partial r}+\frac{1}{r^{2}} \sin ^{2} \theta \frac{\partial^{2} \psi(r)}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\psi(r)}{\partial \theta}\right)}{}+\frac{1}{\left.4 \pi \epsilon_{0}\right|^{2}} \psi(r)=E \psi(r)\right.
\end{aligned}
$$

Now
solve

Probability distributions for several allowed atomic states for the 1-electron atom

Increasing n adds new radial layers, l=0 give spherical symmetry, I not 0 brings in angular dependence

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=1 state
has $m=1,0,-1$ components
expect to see this

General Quant. Mech. result regarding force on magnetic dipole in a non-uniform magnetic field

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=0 state
Has $m=0$ component only
expect to see this

SURPRISE! ... fundamental particle have an intrinsic magnetic moment. Call it spin.

$$
\vec{F}_{z}=\frac{\partial B_{z}}{\partial z}\left|\vec{\mu}_{z}\right|=\frac{\partial B_{z}}{\partial z} m
$$

Stern-Gerlach experiment
e- beam in l=0 state
Has $m=0$ component only
Actually see this

Intrinsic spin - two varieties

Huge effect on

 multi-electronatoms
Fermions = half integralspin, sach as 1/2, 3/2, 5/2, ... , 73/2 ... protons, neutrons, electrons are all fermions ($\mathrm{s}=1 / 2$) no two fermions can occupy the same exact quantum state

Bosons = integral spin, such as 0, 1, 2 ... photons ($s=1$) and pions ($s=0$) are examples of bosons bosons can occupy the same exact quantum state

Rules for Filling of state for multi-electron atom $n, 1, m_{1}, m_{s}$

Spectroscopic notation - s : l=0, p: l=1, d: l=2, f: l=3, ...
$>$ No two electrons in same state (Pauli exclusion)
> Electrons go into the state with the lowest possible energy (Aufbau)
$>$ Within a sublevel, electrons will have their spin unpaired as much as possible (due to spin-spin interaction contribution to energy)

Chemistry now "solved"

Magnetic Resonance
Consider a current loop in a \vec{B} field

in QM $\left[\begin{array}{l}\text { Spin } \\ \text { Spin component of respect to an axis }\end{array}\right]$ qumeti id d
\Longrightarrow could be orbital spin
or intrinsic spin

If we define \vec{B} to be along $\hat{\jmath}$
$U \equiv$ energy of interaction of $\vec{\mu}$ wi \vec{B}

$$
\begin{aligned}
& U=-\mu_{z} B \\
& \vec{\mu}=-\frac{1}{2} \frac{e}{m} \vec{L}
\end{aligned}
$$

How magnetic moment of e^{-}in atom. depends on \vec{L} (orbital Angular mountion)
For e^{-}in atom $l_{z}=m_{l} \hbar$

$$
\begin{gathered}
\text { if } l=1 \quad m_{l}=-1,0,+1 \\
l_{z}=-1 \hbar, 0,+\hbar \\
\mu_{z}=\frac{e \hbar}{2 m} m_{l}
\end{gathered}
$$

Scan field ... or scan frequency

