No lecture at 2 pm on Wed., Sept 30, 2009

PDF slides + mp3 audio file will be posted on class website ~ hopefully by 2 on Wed.

I will assume you have looked at/listened to this
Maxwell's Equations

James Clerk Maxwell

1831-1879 (Edinburgh)

integral form of Maxwell's eqns

\[\int_s \vec{E} \cdot d\vec{a} = \frac{Q_{encl}}{\varepsilon_0} \]
\[\int_s \vec{B} \cdot d\vec{a} = 0 \]
\[\int_c \vec{E} \cdot d\vec{l} = -\frac{d\int_s \vec{B} \cdot d\vec{a}}{dt} \]
\[\int_c \vec{B} \cdot d\vec{l} = \mu_0 I_{encl} + \mu_0 \varepsilon_0 \frac{d\int_s \vec{E} \cdot d\vec{a}}{dt} \]

"E" is symbol for electric field

"B" is symbol for magnetic field
E, B are "unified" in one framework. Deeper relationship understood by Einstein.

Maxwell united Electric + forces Magnetic = into Electromagnetism

- Changing electric field induces changing magnetic field
- Changing magnetic field induces changing electric field

Propagates out at speed of light!
Fist full of Electric charge \(\rightarrow \) creates changing \(E \) which induces changing \(B \) which induces changing \(E \) \(\ldots \) \(\rightarrow \) it is light

\(b > \) observer very far away

Maxwell's eqns also tell us that \(E, B \) satisfy wave equations

Waves are a well-known mechanical phenomenon

\(\rightarrow \) wave pulse traveling on a string
Waves

Anatomy of Wave

\[v = \lambda f = \lambda \nu \]
\[c = \lambda \nu \]

Period \(T \) of wave is time for "cork" to go through 1 full motion

Frequency \(f \) or \(\nu \) \(\equiv \frac{1}{T} \equiv \text{Hertz} \)

\(T \)
The variety of electromagnetic waves

Objects of Similar Size

wavelength (in meters)

radio waves

Infrared light

Visible light

Ultraviolet light

Microwaves

X-rays

Gamma rays

SM
All waves exhibit:

- Interference: Wave amplitudes add together.
- Diffraction: Waves spread out when going thru small openings.
- Refraction: Waves bend at interface between substances.

Java demos - waves
Java applet for waves interfering on string
http://mysite.verizon.net/vzeoacw1/wave_interference.html

Superposition of two waves - beats, standing waves
http://www.kettering.edu/~drussell/Demos/superposition/superposition.html

Refraction of light at interface
http://www.physics.uoguelph.ca/applets/Intro_physics/refraction/LightRefract.html

Different frequencies bend different amounts... called dispersion.
Colliding waves on a string interfere constructively.
Colliding waves on a string interfere destructively.
Diffraction

Water waves hit hole in seawall and spread out.

Refraction

Waves bend at interface between media.
light is a wave

Theory well understood

Numerous experiments show light behaves exactly like other wave phenomena such as sound, waves on strings, etc.

Only strangeness is that light is a wave that can travel in a vacuum apparently.
Max Planck
(1858-1947)
German national

Awarded 1918 Nobel Prize in physics for analysis of blackbody radiation which contributed to rise of Quantum Mechanics

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Planck.html
Planck was able to explain blackbody radiation experimental data perfectly. But assumed light comes in little packets with energy given by

\[E = h \nu \]

\(h \) \text{ constant}

found experimentally.

Planck's constant