Relativity: the warping of space, time, and minds

Dak̆ dis Blelutrodymanis Maxwells - Wit dieselbe geges-

 co eleltredreanische W, int belonst. Nan denke \& R an पen utd efotim lete Woclselwirkurg nwbebes siown Mag fitn and etbem Leiter. Das beobachthare Pbasomon lisag
 at frend neel der ablichen sutazrung voa Leiber und Nogont, der eue oder der asdese diepr Forper die beiden Fullt, dus win fasader on trenion eind. Dowzer der bewegle wei, otreng

 des Ortea, wo silb Tele der Leiters befinter, Wrlolea an सririt. Rale aber der Magaet und benegt sinh tinen Strona

Steve Manly
Department of Physics and Astronomy
University of Rochester

Closed Geometry

Open Geometry

Speed with respect to you is $4 \mathrm{mi} / \mathrm{hr}$

$2 \mathrm{mi} / \mathrm{hr}$

Speed with respect to you is $2+4=6 \mathrm{mi} / \mathrm{hr}$

The speed of light is greater for beam I, beam II or beam III?

waves

Photo credit: Andrew Davidhazy

Michelson-Morley experiment

1881 - A.A. Michelson in Berlin
1887 - A.A. Michelson and E.W. Morley in US (Case Western)

Weird, huh? What does it mean for the real world?

Enter our man Einstein!

Instead of trying to "save the current paradigm", Einstein bowed before the experiment.

What if it is true??

Two postulates:

1) Michelson-Morley is correct. Speed of light is the same in all inertial reference frames
2) Physics is the same in all inetrial reference frames

Point of view of observer
Moving at constant speed

Einstein thought experiment:
Consider a beam of light that is emitted from the floor of a train that bounces off a mirror on the ceiling and returns to the point on the floor where it was emitted.

Fact: Light is emitted and detected at point A.
This fact must be true no matter who makes the measurement!!!!

Sam is on the train

Velocity of light $=\mathrm{c}$
$\mathrm{c}=$ distance/time
$\mathrm{c}=2 \mathrm{H} / \mathrm{T}_{\text {sam }}$
$\mathrm{T}_{\mathrm{sam}}=2 \mathrm{H} / \mathrm{c}$

Sally watches the train pass and makes the same measurement.

Light is emitted

Sally is standing still, so it takes two clocks.

Light is emitted
Light returns

Sally

Sally sees the light traveling further. If light travels at a constant speed, the same "event" must seem to take longer to Sally than Sam!

Time is relative ... not absolute!!

From Sally's point of view

Distance train travels while light is traveling

$$
=\mathrm{VT}_{\text {sally }}
$$

Makes use of Pythagorian theorem

From Sally's point of view

Sally (on ground)

$$
\left.\begin{array}{l}
2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c} \\
\frac{2 H}{T_{\text {sam }}}=\frac{2}{T_{\text {sally }}} \sqrt{H^{2}+\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right.} \sqrt{H^{2}+\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}} \\
\left(\frac{2 H}{T_{\text {sam }}}\right)^{2} \\
)^{2} \\
\text { sally } \\
T_{\text {sally }}
\end{array}\right)^{2}+\left(\frac{2}{T_{\text {sally }}}\right)^{2}\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2} \quad l
$$

$$
\begin{aligned}
& \left(\frac{2 H}{T_{\text {sam }}}\right)^{2}=\left(\frac{2 H}{T_{\text {sally }}}\right)^{2}+\mathrm{v}^{2} \\
& \left(\frac{1}{T_{\text {sam }}}\right)^{2}=\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{(2 H)^{2}}
\end{aligned}
$$

Recall $2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c}$ or $2 \mathrm{H}=\mathrm{cT}_{\text {sam }}$

$$
\begin{array}{r}
\left(\frac{1}{T_{\text {sam }}}\right)^{2}=\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{\left(c T_{\text {sam }}\right)^{2}} \\
c^{2}=\frac{c^{2} T_{\text {sam }}^{2}}{T_{\text {sally }}^{2}}+\mathrm{v}^{2} \rightarrow\left[T_{\text {sally }}=\left[\frac{1}{\sqrt{1-\left(\frac{\mathrm{v}}{c}\right)^{2}}}\right] T_{\text {sam }}\right]
\end{array}
$$

Sam (on train)

Sally (on ground)

Think about it!
Sam and Sally measure the time interval for the same event.
The ONLY difference between Sam and Sally is that one is moving with respect to the other.

$$
\text { Yet, } \mathrm{T}_{\text {sally }}>\mathrm{T}_{\text {sam }}
$$

The same event takes a different amount of time depending on your "reference frame"!!

Time is not absolute! It is relative!

Can this be true??

Experiment says YES!

Can this be true??

Experiment says YES!

Less time elapsed on the clocks carried on the airplane

$V=0.98 c$
$t_{\text {earth }}=\frac{1}{\sqrt{1-\left(\frac{(匕}{c}\right)^{2}}} t_{\text {spaceship }}$
Lifetime =70 years on spaceship
"Proper time"

$$
t_{\text {earth }}=\frac{1}{\sqrt{1-\left(\frac{98 c}{c}\right)^{2}}} \text { (70 years) }
$$

How long does person appear to live to $t_{\text {earth }}=(5)$ (70 years) astronomers on earth?

$$
t_{\text {earth }}=350 \text { years! }
$$

Measure the length of a boxcar where you are on the car.

Measure the length of a boxcar moving by you.

Length is relative, too!

Lorentz transformations

Lorentz transformations

Lorentz transformations

How are $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ related to $\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}, \mathrm{t}^{\prime}\right)$?

$$
\begin{aligned}
& \mathrm{z}=\mathrm{z}^{\prime} \\
& \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\mathrm{v} \frac{\mathrm{x}^{\prime}}{\mathrm{c}^{2}}\right)
\end{aligned}
$$

Lorentz transformations

Lorentz transformations

Space and time get all mixed up
when you relate observations made
from different points of view

$y=y$
$\mathrm{z}=\mathrm{x}^{\prime}$
$\mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\mathrm{v} \frac{\mathrm{x}^{\prime}}{\mathrm{c}^{2}}\right)$

ANNALEN

anosondit end pontomereser dences W. GLEERT, 1. C. POGGESDORFF, G. UND E. WIEDEYIKK. VIEBTE FOLGE.

BAND 17. pes quszes netis 302. nasp.

KURATOBIUM: F. KOHLRAUSCH, M. PLANCK, G. QU W. C. RONTGEN

ONTER MITWIBKUNG
DEUTXChen Physikninschen oyselischar
M. P【ATCK
yuraungmoserser vos
PAULDRUDE.
MII FUNF FIGURESTAFELS.

LEIPZIG, 1905

3. Zur Elekitrodynamik bewegter Körper; von A. Einstein.

DaB die Elektrodynamik Maxwells - wie dieselbe gegenartig aufgefaBt zu werden pflegt - in ibrer Anwendung suf ewegte Körper 20 Asymmetrien fubrt, welche icht anzuhaften scheinen, ist fubrt, de elektrodynamische W, ist bekannt. Man denke z. B. an uten und einem Leiter. Das beobachtbare Phen einem Magbicr nur ab von der Re Das beobachtbare Phänomen hängt wil rend nach der üblichen Aewegung yon Leiter und Magnet, おer eine oder der üblichen Auffassung die beiden Falle, daB roncinander der andere dieser Körper der bewegte sei, streng und ruht der Leiter, so entsteht in dert sich nămlich der Magnet ein clektrisches Feld von gewissem der Umgebung des Magneten den Orten, wo sich Teile gewissem Energiewerte, welches an erzeugt. Ruht aber der Magnet und befinden, einen Strom so entsteht in der der Magnet und bewegt sich der Leiter, Feld, dagegen im Umgebung des Magneten kein elektrisches in sich Keine Energer eine elektromotorische Kraft Wcher Relativbewegung bei den beiden die aber - Gleich grausgesetzt - bei den beiden ins Auge gefaBten orsd demselben Verlaufe Versen Strömen von derselben die elektrischen Kräfte Beisriele ah
6. Bewele ăhnlicher Art, sowie die miBlungenen Versuch Betach Bung der Erde relativ zum, "Lichtmedium" zu kon absoluten Ruhe zu der Vermutung, daB dem Begriffe der des Elektrodynamik keine in der Mechanik, sondern auch in uprechen, sondern keine Eigenschaften der Erscheinungen entwelche die mechalmebr fur alle Koordinatensysteme, (hon elektrodynamischen und elehungen gelten, auch die fur die GröBen erster Ordnang optischen Gesetze gelten, wie diese Vermutung (deren Inbalt im erwiesen ist. Wir fativital" genannt werden wird) zur Folgenden „Prinzip and außerdem die mit ihm nur scheinbar unvertrung er-

