Welcome to Physics 100

This class is a tour of the universe as seen by modern science. Physics 100 is designed for non-science majors. The course is conceptual and the use of mathematics will be limited.

- ➤ motion
- > Work
- ➢ Energy
- > Gravitation
- >Conservation of momentum and energy
- > Constant acceleration motion
- Rotational motion
- ➤ Waves
- ≻ light
- > electricity and magnetism
- nuclear forces
- > Standard Model of particle physics

- The Big Bang
- > Dark matter
- > stellar evolution
- > Special Theory of Relativity
- General Theory of Relativity
- > Quarks, leptons, gluons, baryons, mesons, etc.
- > cosmic microwave background
- ➢ quantum mechanics
- > Heisenberg's Uncertanity Principle
- \succ radiation
- nuclear bombs
- ≽ etc.

No previous physics instruction is assumed.

The intimate relationship between the very big and the very small

Professor Steven Manly B&L 203E 5-8473 steven.manly@rochester.edu

http://web.pas.rochester.edu/~manly/class/P100_2009S/

Name

email address you use for university business

Other email address if different and you are likely to use it in communications with me

Year: Fr/So/Jr/Sr?

Did you receive the email I sent yesterday from BlackBoard? Yes/No/did not check email since last night

Major/main career interest

Why you are in this course

Scheme	Exam 1	Exam 2	Final exam	Present.	Prob. sets	Recitation
1		22%	30%	20%	14%	14%
2	22%		30%	20%	14%	14%
3	16%	16%	20%	20%	14%	14%

Each scheme calculated, best average sets your place on the numerical curve

I place grade boundaries on numerical curve