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Abstract
We derive the Boltzmann equations for the cosmic distributions of photons

and cold dark matter, respectively. To do this, we begin with the unintegrated
Boltzmann equation and use previous work on the time derivative and collision
terms for photons, and work with zeroth and first-order terms to find the final,
Fourier-space Boltzmann equation. We perform a similar procedure for dark
matter, but with no collision terms, obtaining two equations instead.

1 Introduction

We wish to understand the anisotropies of the cosmic photon and dark matter dis-
tributions. To do this, we need to start with the unintegrated Boltzmann equation:

df

dt
= C[f ] (1)

The left side of the equation is the change in the distribution function, f . The
right side contains all possible collision terms. Using this framework, we will derive
the actual Boltzmann equations for photons and dark matter, which govern the
evolution of perturbations to the distribution.

We are going to use the following perturbed Friedman-Robertson-Walker metric:

g00(t, ~x) = −1− 2Ψ(t, ~x)

g0i(t, ~x) = 0

gij(t, ~x) = a2δij(1 + 2Φ(t, ~x))

where a = a(t) is the expansion coefficient, and Ψ and Φ are temporal and spatial
perturbation terms, respectively. Since these perturbations are small at the times
and scales we are interested in, we will drop them in second order and higher.
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2 Photons

We have previously found the right side of (1) to be

C[f(~p)] = −p∂f
(0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · ~v] (2)

where p is the momentum; f (0) is the zeroth-order piece of the photon distribution
function f , which turns out to be the Bose-Einstein distribution; Θ is a first-order
perturbation to f with Θ0 being the monopole part of the perturbation; ~v is the
bulk velocity of the electron distribution; ne is the density of electrons; and σT is the
Thomson cross-section.

We also found the left side of (1) to be

df

dt

∣∣∣∣
first order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
(3)

Notice that this is entirely first-order! While we did find an equation for the zeroth-
order piece, we know that it must be equal to 0, since all the terms in (2) are
first-order.

Now we can plug (2) and (3) into (1), obtaining the following:

∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi
= neσT [Θ0 −Θ(p̂) + p̂ · ~vb] (4)

It is convenient to write this in terms of the conformal time, η:

η ≡
∫ t

0

dt′

a(t′)
(5)

To write these derivatives in terms of η, we’ll use a product rule:

∂h

∂η
=
∂h

∂t

∂t

∂η

where h is any function.
Now to find ∂η/∂t, we’ll take the derivative of (5):

1 =
∂

∂η

[∫ t

0

dt′

a(t′)

]
=

1

a(t)

∂t

∂η
− 1

a(0)

∂0

∂η
+

∫ t

0

∂

∂η

(
1

a(t′)

)
dt′
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a is independent of η, and the second term is a derivative with respect to 0, so we’re
just left with the first term. Thus,

∂t

∂η
= a

→ ∂h

∂η
=
∂h

∂t
a

There are many terms in (4) that are of this form (to see this, just move the a to
the other side). So we can rewrite (4) as

Θ̇ + p̂i
∂Θ

∂xi
+ Φ̇ + p̂i

∂Ψ

∂xi
= neσTa[Θ0 −Θ(p̂) + p̂ · ~vb] (6)

where a dot indicates derivative with respect to η, the conformal time.
This is a linear PDE coupling Θ to Ψ, Φ, and ~vb, which is difficult to solve. We

can Fourier transform this expression so we’re dealing with ODEs instead, which are
easier to solve. The other benefit of this is that, since we are dealing with a smooth
universe, the only ~x dependence is in the perturbations themselves, which can act as
black boxes for now. This means each Fourier mode evolves independently, and thus
our final set of equations are uncoupled.

We will use the following Fourier transform definition:

Θ(~x) =

∫
d3k

(2π)3
ei
~k·~xΘ̃(~k) (7)

Before writing the final equation, we will define two more quantities which will be
useful. First, define µ as the cosine of the angle between the perturbation wavevector
~k and the photon direction p̂:

µ ≡
~k · p̂
k

(8)

~k always points in the direction the temperature is changing, so when µ = 1, the
photon is travelling in the direction of temperature change as well. We will assume
~̃vb · p̂ = ṽµ, ie the velocity points in the same direction as ~k.

We will also define the optical depth:

τ(η) ≡
∫ η0

η

dη′neσTa (9)

Roughly, we are taking the probability of interaction (neσT ), scaling it by the time
constant a, and integrating that over the time period of interest, which should give
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us the distance a photon can travel without interacting. Note that τ is defined such
that τ̇ = −neσTa.

Now we will take the Fourier transform of (4). Note that

F

[
p̂i
∂h

∂xi

]
= ip̂i · ~k h̃

= ikµh̃

where h is any function. Thus, by taking the Fourier transform, we obtain

˙̃
Θ + ikµΘ̃ +

˙̃
Φ + ikµΨ̃ = −τ̇

[
Θ̃0 − Θ̃ + µṽ

]
(10)

This is the Boltzmann equation for photons.

3 Cold Dark Matter

The main difference between the distribution for dark matter and that for photons is
that dark matter doesn’t interact with any of the other constituents of the universe;
thus, there are no collision terms. Also, dark matter is non-relativistic, which changes
kinematics applied to the distribution function. Specifically, since dark matter is
massive, we now have

gµνP
µP ν = −m2 (11)

Also, the energy is now
E =

√
p2 +m2 (12)

where p2 = gijP
iP j. For the most part, E will replace p in the photon equations.

Now we wish to find the components of P µ. First,

P 2 = −m2 = −(1 + 2Ψ)(P 0) + p2

→ E2 = (1 + 2Ψ)(P 0)

→ P 0 =
E√

1 + 2Ψ
≈ E(1−Ψ)

Now for the spatial components. Write P i = Cp̂i. Then

p2 = gij p̂
ip̂jC2

= a2δij(1 + 2Φ)p̂ip̂jC2

= a2(1 + 2Φ)C2

→ C =
p

a
√

1 + 2Φ
≈ p

a
(1− Φ)
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Now, the total time derivative of the dark matter distribution function is

dfdm

dt
=
∂fdm

∂t
+
∂fdm

∂xi
dxi

dt
+
∂fdm

∂E

dE

dt
+
∂fdm

∂p̂i
dp̂i

dt
(13)

We drop the last term since it’s the product of two first-order terms.
After working through the algebra, which is identical to that performed for the

photon distribution other than the addition of an E term, we obtain the Boltzmann
equation for non-relativistic matter:

∂fdm

∂t
+
p̂i

a

p

E

∂fdm

∂xi
− ∂fdm

∂E

[
da/dt

a

p2

E
+
p2

E

∂Φ

∂t
+
p̂ip

a

∂Ψ

∂xi

]
= 0 (14)

In this linear, non-relativistic treatment, we will drop terms second-order in p/E ≈ v.
We will take moments of (14) and deal with them individually. First, multiply

by the momentum phase-space volume, d3p/(2π)3, and integrate:

∂

∂t

∫
d3p

(2π)3
fdm +

1

a

∂

∂xi

∫
d3p

(2π)3
fdm

pp̂i

E

−
[
da/dt

a
+
∂Φ

∂t

] ∫
d3p

(2π)3

∂fdm

∂E

p2

E
− 1

a

∂Ψ

∂xi

∫
d3p

(2π)3

∂fdm

∂E
p̂ip = 0 (15)

The integral over the direction vector is non-zero only for the perturbed part of fdm.
Thus, the integral in the last term is first-order, and it multiplies the first-order term
∂Ψ/∂xi. Thus, we can drop the last term.

We can further simplify this by noting that the dark matter density is

ndm =

∫
d3p

(2π)3
fdm (16)

and the velocity is defined as

vi ≡ 1

ndm

∫
d3p

(2π)3
fdm

pp̂i

E
(17)

We can write the first two terms in terms of ndm and vi. To evaluate the third
term, we will need to integrate by parts.

Write

∂fdm

∂E
=
∂fdm

∂p

∂p

∂E
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Note that

∂E

∂E
= 1 =

p√
p2 +m2

∂p

∂E

=
p

E

∂p

∂E

→ ∂p

∂E
=
E

p

We can use this to first integrate over the solid angle in momentum phase space, and
then integrate by parts:∫

d3p

(2π)3
p
∂fdm

∂p
= 4π

∫ ∞
0

dp

(2π)3
p3∂fdm

∂p

= −3

(
4π

∫ ∞
0

dp

(2π)3
p2fdm

)
= −3ndm

With these simplifications, (15) becomes

∂ndm

∂t
+

1

a

∂(ndmv
i)

∂xi
+ 3

[
da/dt

a
+
∂Φ

∂t

]
ndm = 0 (18)

Interestingly, the first two terms here are essentially the fluid-dynamical continuity
equation, adjusted by the temporal scale factor a. The third term is a correction
from the FRW metric and the perturbations we included.

To evaluate this expression more, we need to split into zeroth and first-order com-
ponents, which we can deal with individually. Since velocity and the perturbations
are first-order, the zeroth-order equation is

∂n
(0)
dm

∂t
+ 3

da/dt

a
n

(0)
dm = 0 (19)

where n
(0)
dm is the zeroth-order part of ndm. Notice that

∂(n
(0)
dma

3)

∂t
=
∂n

(0)
dm

∂t
a3 + 3a2 da

dt
n

(0)
dm

= a3

(
∂n

(0)
dm

∂t
+ 3

da/dt

a
n

(0)
dm

)
= 0
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So we can write (19) equivalently as

d(n
(0)
dma

3)

dt
= 0 → n

(0)
dm ∝ a−3 (20)

This means that, to zero order, the density of dark matter goes as the inverse cube
of the temporal scale factor a.

Now we will deal with the first order part. Note that we can change all ndm

factors multiplying first-order quantities to n
(0)
dm, since the higher-order part drops

off. Elsewhere, we need to expand ndm into a first-order perturbation:

ndm = n
(0)
dm(1 + δ(t, ~x)) (21)

Plugging this in, we get

n
(0)
dm

∂δ

∂t
+

1

a
n

(0)
dm

∂vi

∂xi
+ 3

∂Φ

∂t
n

(0)
dm = 0

→ ∂δ

∂t
+

1

a

∂vi

∂xi
+ 3

∂Φ

∂t
= 0 (22)

We have two variables to work with in this equation, δ and v. To fix this, we’ll take
the first moment of (1), by multiplying by d3p(p/E)p̂j/(2π)3 and integrating, getting

0 =
∂

∂t

∫
d3p

(2π)3
fdm

pp̂j

E
+

1

a

∂

∂xi

∫
d3p

(2π)3
fdm

p2p̂ip̂j

E2

−
[
da/dt

a
+
∂Φ

∂t

] ∫
d3p

(2π)3

∂fdm

∂E

p3p̂j

E2
− 1

a

∂Ψ

∂xi

∫
d3p

(2π)3

∂fdm

∂E

p̂ip̂jp2

E

The first term is just the time derivative of ndmv
i, as before, and the second is of

order (p/E)2, so we can drop it.
For the third term, we again must integrate by parts. Note first that (p/E)(∂/∂E) =

(∂E/∂p)(∂/∂E) = ∂/∂p. So we can write the third term as∫
d3p

(2π)3

∂fdm

∂p

p2p̂j

E
=

∫
dΩp̂j

(2π)3

∫ ∞
0

dp
p4

E

∂fdm

∂p

= −
∫

dΩp̂j

(2π)3

∫ ∞
0

fdm

(
4p3

E
− p5

E3

)
The p5/E3 term is negligible, so we can drop it. The integral of the term that’s left
is −4ndmv

j. We can perform the same steps on the last term, using the fact that∫
dΩp̂ip̂j = δij

4π

3
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So we have the first moment of the Boltzmann equation:

∂(ndmv
j)

∂t
+ 4

da/dt

a
ndmv

j +
ndm

a

∂Ψ

∂xj
= 0 (23)

Since the velocity is first-order, this equation has no zeroth-order parts. So we can
set ndm = n

(0)
dm. Using the fact we found earlier, that n

(0)
dm ∝ a−3, we get

n
(0)
dm

∂vj

∂t
+ n

(0)
dm

da/dt

a
vj +

n
(0)
dm

a

∂Ψ

∂xj
= 0

→ ∂vj

∂t
+
da/dt

a
vj +

1

a

∂Ψ

∂xj
= 0 (24)

We can rewrite (22) and (24) by taking their Fourier transforms and writing in terms
of derivatives with respect to conformal time η:

˙̃
δ + ikṽ + 3

˙̃
Φ = 0 (25)

˙̃v +
ȧ

a
ṽ + ik ˜̇Ψ = 0 (26)

4 Conclusion

In this paper, we have derived the Boltzmann equations governing perturbations in
the photon and dark matter distribution functions. The use of this is not immediately
obvious; we have these differential equations, so what?

Combining these with the Boltzmann equation for Baryons, this makes up basi-
cally all matter in the early universe. Using these equations, we can derive perturbed
versions of the Einstein field equations, which will allow us to solve for the perturba-
tions themselves. This can give us an idea of how the metric, and the distributions,
actually evolve over time.

This is rather complicated, but I was able to find a powerpoint presentation
that I’ve uploaded to the drive that goes through the process. The result is that
at early times, the fluctuations are larger than the horizon, so the gravitational
potential doesn’t immediately evolve. At intermediate times, however, we have a
radiation-dominated universe which has fluctuation modes inside the horizon. Ra-
diation pressure ends up dominating, and we have a decaying potential. At later
times, the universe is matter-dominated, and the potential is constant.

We also find that in the radiation-dominated epoch, the growth of dark matter
is slowed by decaying potentials, and thus its density only grows logarithmically. At
later times, however, the universe is matter-dominated, allowing dark matter to grow
linearly.
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