
Modeling Particle Interactions with Feynman
Diagrams

Jeremy Atkins
Kapitza Society

2020-12-09

Abstract

We build the basic theory of Feynman diagrams, motivated by
understanding particle interactions. Following Wick and Schwinger,
we solve a simple problem of two mesons interacting and resulting in
two mesons again, and demonstrate how Feynman diagrams can be
used to solve the problem much more easily. We then explore how they
can be used to quickly find the amplitude of a two particle interaction
that yields four particles, and then show the breakdown of the theory
when the diagrams contain loops (and motivate renormalization). We
also show how vacuum fluctuations arise. All information is based on,
and all figures are drawn from, Quantum Field Theory in a Nutshell
by A. Zee [1].

Free field theory is fairly easy to solve just using path integrals, since the
defining path integral is just a Gaussian, and we have standard rules to work
those out. But this approximation doesn’t allow for interactions, because it
is fundamentally linear: just in the same way that solutions to a harmonic
oscillator are waves that can travel past each other without changing each
other in the slightest, free field theory doesn’t allow us to model interactions
because the particles just fly by. We need to include some other terms in
the Lagrangian to model these more complicated situations. We’ll add a
quadratic term, λ

4!
ϕ4, and see what impact it has on our model.

Consider the setup in figure 1. This is not a Feynman diagram, only a
representation of the general situation we are trying to model. The num-
bered circles represent sources and sinks (depending on whether they have
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Figure 1

an outgoing or incoming arrow), and the big central circle represents some-
thing happening between the creation (or entrance) of our particles and their
destruction (or exit). Our goal is to work out what’s going on in that middle
bit, in the situation where all our particles are mesons.

We should be able to do this by evaluating the following path integral:

Z(J) =

∫
Dϕ ei

∫
d4x[ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4+Jϕ] (1)

which is very similar to our free field theory, but with the added λ
4!
ϕ4 term so

as to make it anharmonic. Without this term, we have a situation very similar
to a harmonic oscillator, and the particles will simply pass right through each
other. As usual, the ϕ is our field variable, and J is a function representing
our sources and sinks. Since we’re using the setup in figure 1, we specifically
need to find the term containing J(x1)J(x2)J(x3)J(x4). This is just the
four-point Green’s function, G(x1, x2, x3, x4).

We can go about evaluating this integral in two ways. We will begin by
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following Wick’s method. As a reminder, our first evaluation step is

Z(J) = Z(0, 0)
∞∑
s=1

is

s!

∫
dx1 . . . dxs J(x1) . . . J(xs)G

(s)(x1, . . . , xs)

= Z(0, 0)
∞∑
s=1

is

s!

∫
dx1 . . . dxs J(x1) . . . J(xs)

×
∫
Dϕ ei

∫
d4x [ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4] ϕ(x1) . . . ϕ(xs)

.

This shows us our four-point Green’s function:

G(x1, x2, x3, x4) =
1

Z(0, 0)

∫
Dϕ ei

∫
d4x [ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4] ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

=
1

Z(0, 0)

∫
Dϕ ei

∫
d4x [ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4] ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

× e
iλ
4!

∫
d4w ϕ4

≈ 1

Z(0, 0)

∫
Dϕ ei

∫
d4x[ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4] ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)

×
(

1− iλ

4!

∫
d4w ϕ4

)
.

The first term is the standard four-point term, so we really just need to focus
on the second term:

− 1

Z(0, 0)

iλ

4!

∫
d4w

∫
Dϕ (2)

ei
∫
d4x[ 12((∂ϕ)2−m2ϕ2)− λ

4!
ϕ4] ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ

4(w).

Wick contracting this gives us the correction term:

−iλ
∫
d4w D(x1 − w)D(x2 − w)D(x3 − w)D(x4 − w). (3)

As a check, we can also do this calculation the Schwinger way. We begin by
splitting (1) into two pieces:

Z(J) = Z(0, 0)e−i
λ
4!

∫
d4w ( δ

δJ(w))
4

e−
1
2

∫∫
d4x d4y J(x)D(x−y)J(y)

≈ Z(0, 0)

(
− i

4
λ

)∫
d4w

(
δ

δJ(w)

)4(
i4

4! 24

)[∫∫
d4x d4y J(x)D(x− y)J(y)

]4
.

(4)
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We’ve dropped some terms here, since the lower-order terms don’t have
enough J ’s, and the higher-order ones have too many. Remember, we’re
looking specifically for the term with four J ’s; the above expression will
result in exactly that, because we begin with eight, and lose four to the
derivatives.

We’ll introduce some simplifying notation: Ja = J(xa),
∫
a

=
∫
d4xa, and

Dab = D(xa − xb) Then dropping overall numerical factors from (4) gives us

∼ −iλ
∫
w

(
δ

δJw

)4 ∫
a

∫
b

∫
c

∫
d

∫
e

∫
f

∫
g

∫
h

DaeDbfDcgDdhJaJbJcJdJeJfJgJh.

(5)

The four δ
δJw

’s hit the J ’s in all possible combinations, but in fact, most of
the resulting terms result in diagrams that would be disconnected, and thus
not relevant to our physical situation. The remaining term is

∼ −iλ
∫
w

∫
a

∫
b

∫
c

∫
d

DawDbwDcwDdwJaJbJcJd. (6)

which comes from the derivatives hitting the Je, Jf , Jg, and Jh terms, and
setting xe, xf , xg, xh all to w.

We can set J(x) equal to the sum of four delta functions peaked at x1,
x2, x3, and x4, which represents our physical situation. This lets us further
evaluate (6) to

∼ −iλ
∫
w

D1wD2wD3wD4w.

which is the same as equation (3).
How do we interpret this result? Each of the Diw terms stands for a single

line in figure 2. These mesons propagate from the points x1 and x2 to some
point in spacetime marked by w with an amplitude D(x1 − w)D(x2 − w),
scatter at that point with amplitude −iλ, and then propagate from w to x3
and x4 with amplitude D(w−x3)D(w−x4) (note that D(x) = D(−x). Then
we integrate w over all of spacetime, meaning that the interaction point could
be anywhere, but each point is weighted by the amplitude involving these
functions.

This was quite a bit of work to figure out, and this was only a simple
example. Can we figure out the rules here, and just use those instead? In
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Figure 2

the above example, we could just think about it first in exactly the way just
described. Associate−iλ with a scattering point, D(x1−w) with propagation
from x1 to w, and so forth.

Well, since we’re talking about it, that might be a bit of a giveaway that
it is possible. This is easier to do in momentum space, so we’ll switch there
first. We have that

D(xa − w) =

∫
d4k

(2π)4
e±ika(xa−w)

k2a −m2 + iε
.

where we’ve used a ± since we have that freedom, and it will make things
easier to see in the end.

We can plug this into equation (3) and switch the order of integration.
Then with appropriate choice of signs, the inner integral gives∫

d4w e−i(k1+k2−k3−k4) = (2π)4δ(4)(k1 + k2 − k3 − k4).

So the fact that the interaction can occur anywhere in space actually results
in conservation of momentum!

The momentum space Feynman rules are the following:

1. Draw Feynman diagram of the process

2. Label each line with a momentum k and associate it with the propa-
gator i

k2−m2+iε
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3. Associate with each interaction vertex the coupling factor −iλ and the

momentum conservation term (2π)4δ(4)
(∑

i ki −
∑

j kj

)
4. Integrate momenta associated with internal lines with the measure

1
(2π)4

d4k

5. Finally, attach symmetry factors that originate from the various ways
the δ

δJ
’s can hit all the J ’s

Applying these rules to figure (2) yields us the amplitude

4∏
a=1

(
i

k2a −m2 + iε

)
(−iλ)(2π)4δ(4)(k1 + k2 − k3 − k4).

Notice that many of these terms will be present in entire classes of diagrams.
We don’t really need to drag around the

∏
() term, since it will appear in any

diagram involving two mesons scattering into two mesons. This is actively
harmful for external (“real”) particles, since they are always “on-shell” (ie,
k2a − m2 = 0). Additionally, since there’s always going to be an overall
momentum conservation factor, we don’t need to write down the δ function
either. These conditions give us the following additional convenience rules:

6. Don’t associate a propagator with the external lines

7. The δ function for overall momentum conservation is understood

Applying these additional rules to figure (2) yields the amplitude M =
−iλ.

We can now easily describe a wide variety of situations, such as how two
colliding mesons can in fact produce four mesons!

A diagram of this situation appears in figure (3). Since there are two
vertices, we are looking for a term second-order in λ. We can “amputate
the external legs” according to rule 6, and include the propagator associated
with the line marked q. We also need momentum conservation δ functions
for each of the vertices. Finally, we integrate over the internal momentum q
to get

(−iλ)2
∫

d4q

(2π)4
i

q2 −m2 + iε
(2π)4δ(4)(k1 + k2 − k3 − q)(2π)4δ(4)(q − (k4 + k5 + k6))

= (−iλ)2
i

(k4 + k5 + k6)2 −m2 + iε
(2π)4δ(4)(k1 + k2 − (k3 + k4 + k5 + k6)).
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Figure 3

By rule 7, we don’t need to carry around the δ function we get at the end,
so we can just write the final amplitude as

M = (−iλ)2
i

(k4 + k5 + k6)2 −m2 + iε
.

Much of the time we can just read off the final answer, without needing to
compute the integral explicitly.

Already this tells us something new: the amplitude decreases as the mo-
mentum of the external line, k4 +k5 +k6, gets further away from the mass m.
The amplitude associated with the internal, “virtual” particle is penalized in
proportion to how “unreal” it is.

Let’s apply our model to a stranger situation, represented by the dia-
gram in figure 4. Following our rules (and imposing momentum conservation
immediately), we obtain the amplitude (ignoring proportionality constants):

M∝ (−iλ)

∫
d4k

(2π)4
i

k2 −m2 + iε

i

(k1 + k2 − k)2 −m2 + iε
.

The integrand here is large if and only if one or both of the internal virtual
particles is close to being real, as above. But notice how the integrand scales
with k: it actually goes as 1

k4
.
∫
d4k 1

k4
diverges, and so does the above

integral.
In fact, similar problems will show up whenever we have loops. But our

theory can be salvaged! The details are outside of the scope of this paper,
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Figure 4

but there is a sense in which this infinity is not “real”, and can be subtracted
off, in a similar way to subtracting a constant. This procedure is called
renormalization.

Finally, we can explore another interesting example. Consider one of the
dropped terms from equation (5), which is of the form

−iλ
∫
a

∫
b

∫
e

∫
f

DaeDbfJaJbJeJf

(∫
w

DwwDww

)
.

We again let J be the four delta functions, and we find a term proportional
to [

−iλD13D24

∫
w

DwwDww

]
J1J2J3J4.

plus terms obtained by permuting indices.
What is the physical interpretation of our result? Figure (5) holds the

answer. We have a particle going from x1 to x3 and then disappearing, and
similarly a particle going from x2 to x4 and then disappearing. Then we also
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Figure 5

have a vertex that could be anywhere in spacetime, at which (with amplitude
−iλ) two particles are created and the destroyed.

These are known as vacuum fluctuations, and it appears that they can
happen spontaneously. There can be widely varying numbers of these par-
ticles at any one time. On the dotted line, for example, which represents a
single moment, there appear to be four particles, but at other times, there
are two, or even zero.

You may object: “Four particles? But there are only three lines!” This is
again beyond the scope of this paper, but suppose we drew an arrows on the
loops, and interpreted that just the same way we do in any other diagram:
a particle traveling from one point to another (or in this case, one spacetime
point back to itself). But time points upwards in this diagram, so what are
we to make of the half of the line that seems to be traveling in the wrong
direction? Well, it seems easy enough to say that it is the same particle, but
traveling backwards in time! In fact, this leads us to another interpretation
of antimatter.

As we have seen, Feynman diagrams are an invaluable tool for evaluating
the amplitude of large classes of particle interactions. Not only do they
provide essential quantitative information, they also tell us qualitative results
that we would not have expected a priori. Thus, their central role in much
of modern particle physics and quantum mechanics.
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