Lie Algebra of $S O(3)$ and Ladder Operators

Fatima Zaidouni

Wednesday, December 18, 2019

PHY 391- Prof. Rajeev - University of Rochester

Abstract

In this paper, we construct the irreducible representations of the Lie Algebra $S O(3)$ as a powerful example to be able to deal with more complex algebras. We introduce the ladder operators and address how to multiply two irreducible representations of $S O(3)$ together through the Clebsh-Gordan decomposition.

1 Representation of $\mathrm{SO}(3)$

In the previous lecture, we constructed the irreducible representation of the group $S O(3)$. In this section, we will do so for the Lie algebra of $S O(3)$. Although the two are different, we will use the same notation $S O(3)$. We found that rotations are exponentials of linear combinations of the generators of the $S O(3)$ group which satisfy the following commutation relations, as seen in an earlier lecture,

$$
\begin{equation*}
\left[J_{x}, J_{y}\right]=i J_{z}, \quad\left[J_{y}, J_{z}\right]=i J_{x}, \quad\left[J_{z}, J_{x}\right]=i J_{y} \tag{1}
\end{equation*}
$$

Recall that representing an algebra means finding the generators J_{x}, J_{y}, J_{z} such that equation 1 is satisfied. Note that we will done both the abstract operators and their matrix representation by J_{i} where $i=x, y, z$
The new generators do not commute per equation 1 , therefore they can no be diagonalized simultaneously. Thus, we work in a basis where one of them is diagonal; J_{z} by convention. Let $J_{ \pm}=J_{x} \pm i J_{y}$ and let f be a test function, we have,

$$
\begin{align*}
{\left[J_{z}, J_{ \pm}\right] f } & =J_{z} J_{ \pm} f-J_{ \pm} J_{z} f \\
& =J_{z}\left(J_{x} f \pm i J_{y} f\right)-\left(J_{x} \pm i J_{y}\right)\left(J_{z} f\right) \\
& =\left[J_{z}, J_{x}\right] f \pm i\left[J_{z}, J_{y}\right] f \tag{2}\\
& =i J_{y} \pm i^{2} J_{x} \\
& = \pm J_{ \pm}
\end{align*}
$$

Similarly, we can show that

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=2 J_{z} \tag{3}
\end{equation*}
$$

In what follows, we will use Dirac's notation instead of working with matrices. J_{z} is an eigenvector with eigenvalue m, we write

$$
J_{z}|m\rangle=m|m\rangle
$$

Since J_{z} is hermitian, its eigenvalues are real, thus m is real. Note that since $J_{ \pm}$is not commutative with J_{z}, $J_{ \pm}$is not diagonal in the basis where J_{z} is diagonal. Consider,

$$
\begin{align*}
J_{z} J_{+}|m\rangle & =\left(J_{+} J_{z}+\left[J_{z}, J_{+}\right]\right)|m\rangle \\
& =\left(J_{+} J_{z}+J_{+}\right)|m\rangle \\
& =\left(m J_{+}+J_{+}\right)|m\rangle \tag{4}\\
& =(m+1) J_{+}|m\rangle
\end{align*}
$$

Where we used both equation 1 and 3. Thus, $J_{+}|m\rangle$ is an eigenstate of J_{z} with eigenvalue $m+1$. Therefore, the state $J_{+}|m\rangle$ is equal to the state $|m+1\rangle$ multiplied by a normalization constant. We can write,

$$
\begin{equation*}
J_{+}|m\rangle=c_{m+1}|m+1\rangle \tag{5}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
J_{z} J_{-}|m\rangle & =\left(J_{-} J_{z}+\left[J_{z}, J_{-}\right]\right)|m\rangle \\
& =\left(J_{-} J_{z}+J_{-}\right)|m\rangle \tag{6}\\
& =(m-1) J_{-}|m\rangle
\end{align*}
$$

By the same logic, we have,

$$
J_{-}|m\rangle=b_{m-1}|m-1\rangle
$$

We can think about $\ldots,|m-1\rangle,|m\rangle,|m+1\rangle, \ldots$ as rungs of a ladder. J_{+}acts as a raising operator that allows us to climb one rung of the ladder each time we use it. Similarly, J_{-} can be thought of as lowering operator. Thus, $J_{ \pm}$are the ladder operators.
Since J_{x}, J_{y}. J_{z} are hermitian operators, they are equal to their conjugate transpose, thus,

$$
\begin{align*}
\left(J_{+}\right)^{\dagger} & =\left(J_{x}+i J_{y}\right)^{\dagger} \\
& =J_{x}^{\dagger}-i J_{y}^{\dagger} \tag{7}\\
& =J_{x}-i J_{y} \\
& =J_{-}
\end{align*}
$$

Where \dagger denotes the conjugate transpose. if we multiply equation 5 by $\langle m+1|$, we obtain,

$$
\langle m+1| J_{+}|m\rangle=c_{m+1}\langle m+1 \mid m+1\rangle=c_{m+1}
$$

Taking the conjugate,

$$
\begin{align*}
\left(c_{m+1}\right)^{\star} & =\left(\langle m+1| J_{+}|m\rangle\right)^{\star} \\
& =\langle m| J_{+}^{\dagger}|m+1\rangle \\
& =\langle m| J_{-}|m+1\rangle \quad \text { using }(7) \tag{8}\\
& =\langle m| b_{m}|m\rangle \\
& =b_{m}\langle m \mid m\rangle \\
& =b_{m}
\end{align*}
$$

Therefore, we proved that $b_{m-1}=\left(c_{m}\right)^{\star}$. Thus,

$$
\begin{equation*}
J_{-}|m\rangle=b_{m-1}|m-1\rangle=\left(c_{m}\right)^{\star}|m-1\rangle \tag{9}
\end{equation*}
$$

If we act on equation 9 by J_{+}we obtain,

$$
J_{+} J_{-}|m\rangle=\left(c_{m}\right)^{\star} J_{+}|m-1\rangle=\left|c_{m}\right|^{2}|m\rangle
$$

. Similarly, if we act on $J_{+}|m\rangle$ by J_{-}, we obtain,

$$
J_{-} J_{+}|m\rangle=\left|c_{m+1}\right|^{2}|m\rangle
$$

2 Ladder termination

Since the representation of $S O(3)$ is finite dimensional, the ladder must terminate. Let $\max (m)=j$ thus, there is a state $|j\rangle$ where $J_{+}|j\rangle=0$ that represents the top of the ladder. This implies that

$$
J_{+}|j\rangle=c_{m+1}|m+1\rangle=0
$$

Thus,

$$
\begin{align*}
\langle j| J_{-} J_{+}|j\rangle & =\langle j| J_{+} J_{-}-\left[J_{+}, J_{-}\right]|j\rangle \\
& =|j\rangle\left(J_{+} J_{-}|j\rangle-2 J_{z}|j\rangle\right) \\
& =|j\rangle\left(\left|c_{j}\right|^{2}|j\rangle-2 j|j\rangle\right) \tag{10}\\
& =\left|c_{j}\right|^{2}-2 j \\
& =0
\end{align*}
$$

Thus $\left|c_{j}\right|^{2}=2 j$. Additionally,

$$
\begin{equation*}
\langle m|\left[J_{+}, J_{-}\right]|m\rangle=\langle m|\left(J_{+} J_{-}-J_{-} J_{+}\right)|m\rangle=\left|c_{m}\right|^{2}-\left|c_{m+1}\right|^{2}=\langle m| 2 J_{z}|m\rangle=2 m \tag{11}
\end{equation*}
$$

Thus, we have both $\left|c_{m}\right|^{2}=\left|c_{m+1}\right|^{2}+2 m$ and $\left|c_{j}\right|^{2}=2 j$. These two equations allows to determine $\left|c_{m}\right|$ as follows,

$$
\left|c_{j-1}\right|^{2}=\left|c_{j}\right|^{2}+2(j-1)=2(2 j-1)
$$

Let $m=j-2$:

$$
\left|c_{j-2}\right|^{2}=\left|c_{j-1}\right|^{2}+2(j-2)=2(3 j-1-2)
$$

In general, we can write,

$$
\left|c_{j-s}\right|^{2}=2\left[(s+1) j-\sum_{i=1}^{s} i\right]
$$

By Gauss's law $\sum_{i=1}^{s} i=\frac{1}{2} s(s+1)$ so,

$$
\begin{equation*}
\left|c_{j-s}\right|^{2}=2\left((s+1) j-\frac{1}{2} s(s+1)\right)=(s+1)(2 j-s) \tag{12}
\end{equation*}
$$

Substituting $s=2 j$ yields $\left|c_{j-s}\right|^{2}=0$ thus,

$$
J_{-}|-j\rangle=c_{-j}^{*}|-j-1\rangle=0
$$

This implies the the $\min (m)=-j . s$ counts the number of rungs climbed down, it is therefore an integer. Since the ladder terminates at $s=2 j, j$ is either an integer or half integer depending on whether s is even or odd. Since our states are $|-j\rangle, \ldots .,|j\rangle$, the total number of states is $2 j+1$. To emphasize the j dependence we denote a state $|n\rangle$ by $|j, m\rangle$.

We have shown that the representation of $S O(3)$ are $2 j+1$ when j is an integer. Therefore, the methods of tensors(previous lecture) and Lie algebra agree. What about the case when j is a half integer?

When $j=\frac{1}{2}, 2 j+1=2$ thus we have a $2-D$ representation consisting of $\left|-\frac{1}{2}\right\rangle, \frac{1}{2}$ states. This will be solved in an upcoming lecture when discussing $S U(2)$ especially in the context of electron spin.

By equation 12, for $s=j-m=1$, we have $j-s=j-j+m=m$ thus,

$$
\left|c_{m}\right|^{2}=(j+m)(j+1-m)
$$

which implies,

$$
\begin{equation*}
J_{+}|m\rangle=c_{m+1}|m+1\rangle=\sqrt{(j+1+m)(j-m)}|m+1\rangle \tag{13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
J_{-}|m\rangle=c_{m}^{*}|m-1\rangle=\sqrt{(j+1-m)(j+m)}|m-1\rangle \tag{14}
\end{equation*}
$$

3 Multiplying two $S O(3)$ representations

Using the tensor approach introduced in the previous lecture, suppose we have two $S O(3)$ tensors; a symmetric traceless tensor $S^{i j}$ and a vector T^{k}. They furnish the 5 -dimensional and 3-dimensional irreducible representations, respectively. Thus, the product $P^{i j k}=S^{i j} T^{k}$ is a 3 -indexed tensor with 15 components. Note that $P^{i j k}$ is not necessarily symmetric and traceless. However since the irreducible representations of $S O(3)$ are furnished by symmetric traceless tensors, we can write $P^{i j k}$ as a linear combination of symmetric traceless tensors.

We can construct the symmetric tensor:

$$
U^{i j k}=S^{i j} T^{k}+S^{j k} T^{i}+S^{k i} T^{j}
$$

The trace is $U^{k}=\delta^{i j} U^{i j k}=2 S^{i k} T^{i}$. To make it traceless, we define:

$$
\tilde{U}^{i j k}=S^{i j} T^{k}+S^{j k} T^{i}+S^{k i} T^{j}
$$

which furnishes a 7 -dimensional irreducible representation.
To extract the antisymmetric part of $S^{i j} T^{k}$, we contract it with the antisymmetric symbol
$V^{i l}=S^{i j} T^{k} \varepsilon^{j k l}$. The symmetric and antisymmetric parts of $V^{i l}$ are $W^{i l}=V^{i l}+V^{l i}$ and $X^{i l}=V^{i l}-V^{l}$ respectively.
We can write,

$$
\begin{align*}
X^{i l} & =\frac{1}{2} X^{i l} \varepsilon^{m i l} \\
& =S^{i j} T^{k} \varepsilon^{j k l} \varepsilon^{m i l} \\
& =S^{i j} T^{k}\left(\delta^{j m} \delta^{k i}-\delta^{j i} \delta^{k m}\right) \tag{15}\\
& =S^{i m} T^{i} \\
& =\frac{1}{2} U^{m}
\end{align*}
$$

This furnishes a 3 -dimensional irreducible representation.
We can see that the symmetric part is traceless by setting $i=l$ in

$$
W^{i l}=S^{i j} T^{k} \varepsilon^{j k l}+S^{l j} T^{k} \varepsilon^{j k i}
$$

This has $\frac{1}{2}(3.4)-1=5$ components. We have, therefore, showed that:

$$
\begin{equation*}
5 \otimes 3=7 \oplus 5 \oplus 3 \tag{16}
\end{equation*}
$$

In the general case, the product of $S^{i_{1} \cdots i_{j}}$ and $T^{k_{1} \cdots k_{j^{\prime}}}$ is a tensor with $j+j^{\prime}$ indices. If we symmetrize and take out its trace as shown above, we get the irreducible representation labeled by $j+j^{\prime}$.

If we contract it with $\varepsilon^{i k l}$, we trade two indices, i and k, for one index l, which results in a tensor with $j+j^{\prime}-1$ indices. We get the irreducible representation labeled by $j+j^{\prime}-1$. We can keep repeating this process. If we let $j \geq j^{\prime}$., without loss of generality, we have shown that $j \otimes j^{\prime}$ contains the irreducible representations $\left(j+j^{\prime}\right) \oplus\left(j+j^{\prime}-1\right) \oplus\left(j+j^{\prime}-2\right) \oplus \cdots \oplus$ $\left(j-j^{\prime}+1\right) \oplus\left(j-j^{\prime}\right)$. Using the absolute value, we can write:

$$
\begin{equation*}
j \otimes j^{\prime}=\left(j+j^{\prime}\right) \oplus\left(j+j^{\prime}-1\right) \oplus\left(j+j^{\prime}-2\right) \oplus \cdots \oplus\left(\left|j-j^{\prime}\right|+1\right) \oplus\left|j-j^{\prime}\right| \tag{17}
\end{equation*}
$$

The number of components in (17) is:

$$
\begin{equation*}
\sum_{\left|j-j^{\prime}\right|}^{j+j^{\prime}}(2 k+1)=\left(j+j^{\prime}+1\right)^{2}-\left(j-j^{\prime}\right)^{2}=(2 j+1)\left(2 j^{\prime}+1\right) \tag{18}
\end{equation*}
$$

4 Conclusion

We have used our definition of the algebra $S O(3)$ to construct the irreducible representations of the Lie Algebra $S O(3)$. We introduced the Ladder operators and proved their most important properties. Finally, we showed how to multiply together two irreducible representations of $S O(3)$.

References

Zee, A. (2016). Group theory in a nutshell for physicists. Princeton and Oxford: Princeton University Press.

