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Introduction 

 In order to properly study cosmology, a set of mathematical tools are required for 

describing the universe.  Without these, one cannot evaluate the mathematical aspect of 

spacetime.  There would be immense amounts of hand-waving and jumping to conclusions, as 

well as blind trust in the author and conceptual intuition.  This is not physics.  So, in order to be 

able to rigorously study and understand the universe, one must begin with the “basics.”  In this 

case, basic meaning fundamental rather than simple.  Here, a solid foundation is built from which 

more complex observations can be derived.  The foundation in this case is the mathematical 

framework of general relativity. 
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Assumptions 

 A part of building the foundation is first evaluating the base case.  Here, that means that it 

will be assumed that: 

1. The universe is smooth, meaning no densities vary as a function of space. 

2. The universe is in equilibrium. 

Again, these things are not universally true, but the case explored here is one in which they 

are, as this is the simplest version of reality.  Additionally, the convention that will be followed is 

this: 

ћ = 𝑐 =  𝑘𝐵 = 1 

 

The Metric 

 Distance is a surprisingly complex concept.  It seems pretty simple and explainable, but it 

turns out that it is not, especially when considering an expanding universe.  Distance is usually 

thought of in terms of a coordinate system, but no single, basic coordinate system can account 

for the curvature of spacetime or the expansion of the universe.  This is where the metric comes 

into play.  The metric takes coordinate distance and turns it into physical distance, such that it no 

longer relies on the coordinate system of the measurement.  This physical distance is invariant; it 

does not change based on coordinate transformations of different observers.  Starting with the 

simplest case, the square of the invariant distance in two-dimensional space is as follows: 

𝑑𝑙2 = ∑ 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗

𝑖,𝑗=1,2

 

 The metric here is gij, a 2x2 matrix.  It is different depending on the coordinate being 

used.  Here are the matrices for two common coordinate systems within this case: 

           Cartesian                 Polar 

[
1  0
0  1

]                    [
1   0
 0  𝑟2] 
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 A helpful aspect of the metric is that it accounts for the effects of gravity on spacetime.  

Rather than considering gravity as an external force that affects matter, the metric allows for 

gravity to be built into the geometry of space.   

 Spacetime, however, is not two-dimensional but rather four-dimensional.  Along with 

convention, the zeroth dimension is time, and the first, second, and third are the three spatial 

dimensions.  In this case, the square of the invariant distance is as follows: 

𝑑𝑠2 = ∑ 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈

3

𝜇,𝜈

 

 In which 𝑔𝜇𝜈 is a 4x4, symmetrical matrix.  In Minkowski spacetime, the Minkowski 

metric is used.  Thus, 𝑔𝜇𝜈 = 𝜂𝜇𝜈, and: 

𝜂𝜇𝜈 = [

−1  0  0  0
   0  1  0  0
   0  0  1  0
   0  0  0  1

] 

 To adapt this for the expanding, flat universe, the Friedmann-Robertson-Walker, or 

FRW, metric is used.  This takes the Minkowski metric and multiplies the spatial components by 

a scale factor of a2(t), resulting in: 

𝑔𝜇𝜈 = [

−1      0      0       0
   0   𝑎2(𝑡)  0       0

   0      0    𝑎2(𝑡)  0

       0      0     0    𝑎2(𝑡) 

] 

 

The Geodesic Equation 

 In cartesian coordinates, the shortest distance from one point to another is a straight line 

between the two points.  In more complicated geometries, this rule often fails to find the shortest 

possible path.  The equation used to find this path is the geodesic, which is the path a particle 

follows in the absence of any external forces.  To satisfy this, the acceleration of a particle needs 

to be set to zero. 
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 In order to generalize this, the base case is once again a freely moving particle in two-

dimensional Euclidian space, which yields: 

𝑑2𝑥𝑖

𝑑𝑡2
= 0 

 Applying a known coordinate system once again, how can this be generalized to polar 

coordinates?  The basis vectors for polar coordinates are �̂� and 𝜃.  These vectors vary over space, 

whereas the basis vectors for cartesian coordinates do not.  Setting x’i=(r, θ), the above condition 

does not imply the following condition: 

𝑑2𝑥′𝑖

𝑑𝑡2
= 0 

 Instead, the cartesian condition needs to be transformed.  This is done using the 

transformation matrix as follows: 

𝜕𝑥𝑖

𝜕𝑥′𝑗
= [

cos (𝑥′2
) −𝑥′1

sin (𝑥′2
)

sin (𝑥′2
) 𝑥′1cos (𝑥′2

)
] 

𝑑𝑥𝑖

𝑑𝑡
=

𝜕𝑥𝑖

𝜕𝑥′𝑗

𝑑𝑥′𝑗

𝑑𝑡
 

 Thus transforming the velocity of the particle from cartesian coordinates to polar 

coordinates.  The geodesic equation then becomes the following: 

𝑑

𝑑𝑡
[
𝑑𝑥𝑖

𝑑𝑡
] =

𝑑

𝑑𝑡
[

𝜕𝑥𝑖

𝜕𝑥′𝑗

𝑑𝑥′𝑗

𝑑𝑡
] = 0 

 Note that the time derivatives cannot simply cancel out, as the transformation being used 

is not linear.  The following equality emerges from the above equations: 

𝑑

𝑑𝑡
[

𝜕𝑥𝑖

𝜕𝑥′𝑗
] =

𝜕

𝜕𝑥′𝑗
[
𝑑𝑥𝑖

𝑑𝑡
] =

𝜕2𝑥𝑖

𝜕𝑥′𝑗𝜕𝑥′𝑘

𝑑𝑥′𝑘

𝑑𝑡
 

 And thus, the following geodesic equation arises: 

𝑑

𝑑𝑡
[

𝜕𝑥𝑖

𝜕𝑥′𝑗

𝑑𝑥′𝑗

𝑑𝑡
] =

𝜕𝑥𝑖

𝜕𝑥′𝑗

𝑑2𝑥′𝑗

𝑑𝑡2
+

𝜕2𝑥𝑖

𝜕𝑥′𝑗𝜕𝑥′𝑘

𝑑𝑥′𝑘

𝑑𝑡

𝑑𝑥′𝑗

𝑑𝑡
= 0 
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 The transformation is being used on the first term of the middle portion of the equality.  

Thus, this equality can be multiplied by the inverse of the transformation matrix to get a more 

palatable form. 

𝑑2𝑥′𝑙

𝑑𝑡2
+ [({

𝜕𝑥

𝜕𝑥′
}

−1

)
𝑖

𝑙
𝜕2𝑥𝑖

𝜕𝑥′𝑗𝜕𝑥′𝑘]
𝑑𝑥′𝑘

𝑑𝑡

𝑑𝑥′𝑗

𝑑𝑡
= 0 

 From this equation, the Christoffel symbol 𝛤𝑗𝑘
𝑙  can be defined as the term in the square 

brackets.  This symbol becomes useful in many calculations withing general relativity. 

 To generalize the derived geodesic equation to general relativity, the range of the indices 

changes from 1 and 2 to 0 to 3.  Also, time can no longer be used as the standard evolution 

parameter, since it is now one of the coordinates.  Thus, the parameter λ is introduced.  This 

parameter increases along a particles path.  Using this and the Christoffel symbol, the geodesic 

equation becomes the following: 

𝑑2𝑥𝜇

𝑑𝜆2
= −𝛤𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝜆

𝑑𝑥𝛽

𝑑𝜆
 

 Here, the Christoffel symbol was found through generalization of the geodesic over 

transformation of coordinates.  However, it is generally simpler to use the following relation to 

find the Christoffel symbol. 

𝛤𝛼𝛽
𝜇

=
𝑔𝜇𝜈

2
[
𝜕𝑔𝛼𝜈

𝜕𝑥𝛽
+

𝜕𝑔𝛽𝜈

𝜕𝑥𝛼
−

𝜕𝑔𝛼𝛽

𝜕𝑥𝜈
] 
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Einstein Equations 

 The Einstein equation for general relativity is as follows: 

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈ℛ = 8𝜋𝐺𝑇𝜇𝜈 

 There are many new terms in this equation, so here is a list of what they all are: 

• 𝐺𝜇𝜈: Einstein Tensor 

• 𝑅𝜇𝜈: Ricci Tensor 

• ℛ: Ricci Scalar; contraction of the Ricci tensor, such that ℛ ≡ 𝑔𝜇𝜈𝑅𝜇𝜈 

• G: Newton’s Constant 

• 𝑇𝜇𝜈: Energy-Momentum Tensor 

The Einstein equations relate a function of the metric to a function of energy.   

The Ricci Tensor can be defined as follows: 

𝑅𝜇𝜈 = 𝛤𝜇𝜈,𝛼
𝛼 − 𝛤𝜇𝛼,𝜈

𝛼 + 𝛤𝛽𝛼
𝛼 𝛤𝜇𝜈

𝛽
− 𝛤𝛽𝜈

𝛼 𝛤𝜇𝛼
𝛽

 

In which the notation of ,i in the subscript denotes a partial derivative over xi.  Due to the 

nature of the Christoffel symbol, the Ricci Tensor only does not vanish for two cases: μ=ν=0 and 

μ=ν=i, with i being a spatial coordinate and 0 being the time coordinate. 

𝑅00 = −𝛤0𝑖,0
𝑖 − 𝛤𝑗0

𝑖 𝛤0𝑖
𝑗

= −𝛿𝑖𝑖

𝜕

𝜕𝑡
(

�̇�

𝑎
) − (

�̇�

𝑎
)

2

𝛿𝑖𝑗𝛿𝑖𝑗 = −3 [
�̈�

𝑎
−

�̇�2

𝑎2
] − 3 (

�̇�

𝑎
)

2

= −3
�̈�

𝑎
 

𝑅𝑖𝑗 = 𝛿𝑖𝑗[2�̇�2 + 𝑎�̈�] 

These can then be used to compute the Ricci Scalar. 

ℛ = −𝑅00 +
1

𝑎2
𝑅𝑖𝑖 = 6 [

�̈�

𝑎
+

�̇�2

𝑎2
] = 6 [

�̈�

𝑎
+

8𝜋𝐺

3
𝜌] 
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