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Abstract 

We take the continuum limit of the mattress path integral model and show that it               
reduces to the classical field equation in the limit ħ → 0. We then introduce the                
source function J(x) as a means to create and annihilate particles. We solve our              
path integral under the free field condition and get the Klein-Gordon Equation.            
We then define the propagator and evaluate it in free field theory using the              
method of contours. 
 
1 Introduction 
 
This paper is adapted from Anthony Zee Quantum Field Theory in a Nutshell             
chapter I.3. The continuum limit is the basis for QFT. Once we have the path               
integral, we are ready to start making physical predictions. The path integral we             
get is only solvable for free field theory which can only be used to describe a                
single relativistic, massive particle. Studying the behavior and methodology of          
free field theory is useful for understanding for complex theories which describe            
scattering processes. 
 
2 The Continuum Limit 
 
In our mattress model we derived the path integral for a single particle 

Z = ∫Dq(t)exp[i dt(½m (dq/dt)2 - V(q))]∫
T

0
(1) 

  
We can easily generalize this to N particles with the new Hamiltonian 

H = p (q , , .., )∑
 

a

1
2ma a

2 + V 1 q2 . qN (2) 

 
We use a to label the particle’s positions and momenta. Substituting back into the              
integral, we get 

ex[(iq(t)Z = ∫
 

 
D t( m ( ) (q , , .., ))]∫

T

0
d ∑

 

a
2
1

a dt
dqa 2 − V 1 q2 . qN (3) 

 
Which we simplify by defining the action 

(q)S = t( m ( ) (q , , .., ))∫
T

0
d ∑

 

a
2
1

a dt
dqa 2 − V 1 q2 . qN (4) 

 
Thus we have 
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q(t)eZ = ∫
 

 
D iS(q) (5) 

 
Note that the potential energy now includes interaction energy terms between           
particles which take the form v(qa-qb) as well as the eternal potential energy terms              
which take the form w(qa). We take the special case where V has the form 

(q , , .., ) k (q ) ..V 1 q2 . qN = ∑
 

ab
2
1

ab a − qb
2 + . (6) 

 
Which is the generalized mattress potential. We are almost at QFT! If we             
consider phenomena on scales much larger than that of the lattice spacing, we             
take the limit l → 0. The label a goes to the vector x1. By convention we replace                  
q with 𝜑, so we have qa(t) → 𝜑(t,x), a field.  

The kinetic energy goes like Σa ∫ 𝜎(∂𝜑/∂t)2. Where we     m ( )2
1

a dt
dq 2 → xd2

2
1    

replace a sum with an integral and write mass per unit area as 𝜎 = ma/l
2. For                 

simplicity we assume all the masses are equal, otherwise sigma would be a             
function of x and we would have an inhomogeneous system which would make             
writing down the invariant action quite difficult. 

Looking at the first term in V, we assume that kab only connects the nearest               
lattice points. Thus for nearest neighbor points we have (qa - qb)

2 ≃ l2(∂𝜑/∂x)2 + …                
. Where the derivatives are taken in the direction that joins a and b. 

With this limit, we write the action 

(q) () t xℒ()S → S ≡ ∫
T

0
d ∫

 

 
d2  

 

t x {( ) [( ) ) ] ..}= ∫
T

0
d ∫

 

 
d2

2
1 ∂

∂t
2 − ∂

∂x
2 + ( ∂

∂y
2 − 2 − 4 + . (7) 

Where 𝜌 is determined by some uninteresting relation between kab and l. We let T               
→ ∞ so that we integrate over all of spacetime. We simplify by writing 𝜌 = 𝜎c2                 
and scale 𝜑 → 𝜑/ . Thus the term appears in the    √     ∂/∂t) [(∂/∂x) ∂/∂y) ]( 2 − c2 2 + ( 2     
lagrangian. We find that c has dimensions of velocity and determines the phase             
velocity of the waves in the mattress. 

The mattress is nonphysical. We just used it for pedagogical reasons. In the             
modern view (Landau-Ginsburg), we start with a symmetry and choose our fields            
by defining how they transform under the symmetry. We then write down the             
action using, at most, second order time derivatives. In our case we chose             
Lorentz invariance as our symmetry and scalar fields as our fields. We get the              
action (c = 1) 

x[ (∂) m ..]S = ∫
 

 
dd

2
1 2 − 2

1 22 − g
3!

3 − λ
4!

4 + . (8) 

With various numerical factors that we will use later. Here we are working in d =                
D + 1 dimensional spacetime. Usually we consider d = 4.  

The symmetry restrictions are very powerful. We find that the lagrangian           
must have the form  

(∂) ()ℒ = 2
1 2 − V (9) 

We restrict V to be a polynomial of 𝜑 for simplicity but it will not affect most of                  
our discussion.  

1 In this paper I will use plainface for 4-vectors and bold for 3-vectors 
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We now see why the variable q rather than x was used to denote position. In                
QFT x is a label rather than a dynamical variable, here the field 𝜑 is the                
dynamical variable.  

We can summarize the continuum limit in the table 
 

(10) 
Thus we get the continuum path integral for d dimensional spacetime 

exp[i ]Z = ∫
 

 
D x( (∂) ()∫

 

 
dd

2
1 2 − V (11) 

Note that we get quantum mechanics for d = 1. 
 
3 The Classical Limit 
 
We can take the classical limit of the path integral formalism as a sanity check.               
For convenience we have used units where ħ = 1, we now return to SI units and                 
put ħ back into the path integral 

exp (i/ħ)Z = ∫
 

 
D xℒ()∫

 

 
d4 (12) 

We then take the limit ħ << S. The integral can be evaluated using the stationary                
phase approximation. Using the Euler-Largrange variational procedure, we get 
 

∂μ
ℒ

(∂ )μ
− ℒ = 0 (13) 

 
The classical field equation, as expected. In our scalar field theory this is 
 

∂ )(x) (x) (x) ..( 2 + m2 + 2
g 2 + 6

λ 3 + . = 0 (14) 
 
4 Creation and Annihilation 
 
We now want to do some physics. Lets create a particle at some point in               
spacetime, watch it move, and then annihilate it at some later point. In our              
pedagogical mattress, we create some excitations by pushing some mass labeled           
by a. This adds a term Σa Ja(t) qa to the potential V(q). taking the continuum limit,                 
we add the term ∫ to the lagrangian. We call J(t,x) a source function,    xJ(x)(x)dD           
and it describes how the mattress is pushed. We get the path integral 
 

exp ]Z = ∫
 

 
D i x[ (∂) () (x)(x)][ ∫

 

 
d4

2
1 2 − V + J (15) 

5 Free Field Theory 
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q → 𝜑 

a → x 

qa(t) → 𝜑(t,x) = 𝜑(x) 

x∑
 

a
→ ∫

 

 
dD  



 
The above integral is only solvable when 

() [(∂) ]ℒ = 2
1 2 − m22 (16) 

We call this theory free or Gaussian theory. The field equation comes out to the               
Klein-Gordon equation . Since it is linear we immediately find the  ∂ )( 2 + m2 = 0          
solution , where (for ħ = 1)(, )t = ei(t−·)  

2 = 2 + m2 (17) 
In the natural system of units, frequency 𝜔 is the energy ħ𝜔, and wave vector 𝒌                
equals momentum ħ𝒌. Thus we have just found the energy-momentum relation.           
This theory should describe a relativistic particle of mass m.  

We now do the path integral 

expZ = ∫
 

 
D i x{ [(∂) ] }[ ∫

 

 
d4

2
1 2 − m22 + J (18) 

Integrate by parts under  and assume boundary terms are zero, we getd x∫ 4  

exp{ }Z = ∫
 

 
D x[− (∂ ) ]i∫

 

 
d4

2
1 2 + m2 + J (19) 

To solve this integral, we use a discretization trick. Let 𝜑(x) → 𝜑i = 𝜑(ia) for i an                  
integer and a the lattice spacing. Differential operators become matrices, for           
example , for some matrix M. Unsurprisingly, (ia) 1/a)( ) M∂ → ( i+1 − i ≡ Σj ij j       
integrals go to sums, for example .d xJ(x)(x) Σ J∫ 4 → a4

i ii  
The path integral is just an integral we did earlier 
 

.. q dq ...dq e∫
∞

−∞
∫
∞

−∞
. ∫

∞

−∞
d 1 2 N

(i/2)q·A·q+iJ ·q  

 
) e= ( (2i)N

det(A)
2
1 −(i/2)J ·A ·J−1

(20) 
With A → , and the inverse equation  going to∂ )− ( 2 + m2 AAij ik

−1 = ik   
∂ )D(x ) (x )− ( 2 + m2 − y = (4) − y  

in the continuum limit. The continuum limit of Ajk
-1 is denoted by the function              

which we call the propagator. We will return to the propagator(x )D − y            
momentarily. We note that the propagator is a function of the displacement of x              
and y and not just x since no point in spacetime is special. Also note that                
Kronecker deltas are replaced by Dirac deltas. 

The final result is 

exp (J)Z = ʗ − i/2) xd yJ(x)D(x )J(y) e[ ( ∫
 

 
∫
 

 
d4 4 − y ≡ ʗ iW (J) (21) 

The factor ʗ is uninteresting and will be omitted from now on. ʗ = and              (J )Z = 0   
we define  such that(J)W  

(J) (J )eZ ≡ Z = 0 iW (J) (22) 
Thus 

(J) − xd yJ(x)D(x )J(y)W = 2
1 ∫

 

 
∫
 

 
d4 4 − y (23) 

Which is a quadratic functional of J. However, Z(J) depends on arbitrarily high             
powers of J. This will be of importance in the section on Feynman diagrams. 
 
6 The Propagator 
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We return to the propagator . Since it is the inverse of a differential     (x )D − y          
operator, it is closely related to Green’s functions.  

Our path integral is easier to solve in momentum space, so we Fourier             
transform and write the Dirac delta function in integral form 

  ∂ )D(x ) e (x )− ( 2 + m2 − y = ∫
 

 

d k4

(2)4
ik(x−y) = (4) − y (24) 

The solution is 

  (x )D − y = ∫
 

 

d k4

(2)4 k −m2 2
eik(x−y)  

But wait! We have to be careful here as the integral hits a pole. To avoid this we                  
replace m → m - i𝜀 with 𝜀 infinitesimally small. We also note reflection              
symmetry for momentum2 k → -k.  

We first integrate over k0 using the Cauchy integral formula. We first write k              
as k = k0 + k. Thus the denominator becomes . Define 𝜔k          /(k )1 2 − m2 + i    

. We have poles at . For the 𝜀 small limit these reduce to+≡ √2
+ m2        ± √k

2 − i          
and . For 𝜀 > 0 we have one pole in the upper half-plane and one in+ k − i   − k + i                 

the lower half-plane. Integrating over real k0 from -∞ to ∞ we encounter no poles.               
We just need to close the integration contour.  

For x0 > 0, exp(ik0x0) is exponentially damped for k0 in the upper half-plane,              
and vice versa for x0 < 0. Thus we choose the contours to be semicircles with                
infinite radius in the upper half-plane pole and the lower half-plane pole            
respectively. From Cuachy’s integral formula we get and       ∫ e− i d k3

(2) 23
k

−i( t−·)k   

respectively. Using the Heaviside step function we write our∫ e− i d k3

(2) 23
k

+i( t−·)k          
answer in one line 

∫ [e (x ) (− )− i d k3

(2) 23
k

−i( t−·)k 0 + e+i( t−·)k x0  
describes the probability amplitude for a disturbance in the field to(x )D − y            

propagate from the y to x.  
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