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1 Introduction

General relativity is a rich and complex field of physics, containing many important results coming from
detailed, rigorous calculations. However, one can also gain a fair amount of knowledge and intuition about
the subject by looking at first order approximations of various systems it describes. In this paper, I aim to
present the results of first order of approximations in gravitational fields due to non-rotating and rotating
objects, which can be used in the case of fairly weak gravitational fields and slow rotations, respectively.

2 Time Dilation due to Graviation

We begin this discussion by first looking at time dilation in general relativity. This will give us some insight
as to how to formulate the weak field metric. To do this, we look at the case of a rocket ship accelerating
through space. At one end of the rocket ship, a laser fires a pulse. At the other end, there is a detector

which registers when the pulse has reached the other end. In this case, we assume that
(
gh
c2

)2
and

(
v
c

)2
are

negligible, where g is the acceleration of the rocket, h is the separation between the laser and the detector,
and v is the velocity of the robot.This means that we can use Newtonian mechanics to describe the movement
of the laser and the detector. We can write them as

zd(t) =
1

2
gt2, zl(t) = h+

1

2
gt2, (1)

where zd is the position of the detector and zl is the position of the laser. We consider the situation where
we have two pulses of light fired from the laser. We define the time at which the first pulse is fired as t = 0,
the time when the first pulse is received as t1, the time the second pulse is fired as τa, and the time the
second pulse is received as t1 + τb. Then, the distance traveled by the first pulse is ct1, which means we can
write the difference between the positions as

zl(0)− zd(t1) = ct1. (2)

The distance travelled by the second pulse can be written as

zl(τa)− zd(t1 + τb) = c(t1 + τb − τa) (3)

From these two expressions, we obtain a system of equations we can write as

h− 1

2
gt21 = ct1 (4)

h− 1

2
gt21 − gt1τb = c(t1 + τb − τa) (5)

Substituting 4 into 5, we get the expression

gt1τb = c (τa − τb) (6)

=⇒ t1 = c
(τa − τb)
gτb

(7)

However, we know from the quadratic formula and 4 that

t1 =
−c±

√
c2 + 2gh

g
, (8)

where we take the positive solution, since we assume that time must be positive. Combining these two
expressions and rearranging, we obtain

τb =
τa√

1 + 2gh
c2

. (9)
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Since we assume that
(
gh
c2

)2
and smaller terms are negligible, we can take an expansion of this to obtain

the time dilation of acceleration as

τb = τa

(
1− gh

c2

)
. (10)

Due to the equivalence principle, we know that this dilation due to acceleration is the same as due to a
gravitational field. We can write gh as the potential difference between these two points, Φb − Φa. We
can extend this to nonuniform fields by simply defining the potential difference between the two points as
Φ(xb)− Φ(xa). Then, our dilation can be written as

τb = τa

(
1− Φ(xb)− Φ(xa)

c2

)
(11)

Therefore, when we derive our weak field metric, it must be consistent with this expression.

3 Geometric Newtonian Formulation of Gravity

3.1 Confirming Time Dilation

In general relativity, we know that the effect of gravity is to curve spacetime. In the Newtonian, first order
approximation, we assume any infinitesimal line segment in this curved spacetime can be written as

ds2 = −
(

1 +
2Φ(xi)

c2

)
(cdt)

2
+

(
1− 2Φ(xi)

c2

)(
dx2 + dy2 + dz2

)
, (12)

where Φ(xi) is a gravitational potential and xi represents a coordinate which only depends on the spatial
position and not on time. We call this the static, weak metric, because it is time independent and valid for
relatively small gravitational fields, such as the one produced by the sun. In this approximation, we assume
that any terms of order greater than 1

c2 are negligible.
To determine if this is consistent with our derivation of gravitational time dilation, we calculate the time

difference between two events in this metric. Since we are only interested in the difference in time, we can
set dx = dy = dz = 0. Therefore, the proper time dτa between two events at some point xa can be written
as

dτ2a =
−ds2

c2
=

(
1 +

2Φ(xa)

c2

)
dt2 (13)

=⇒ dτa =

√
1 +

2Φ(xa)

c2
dt ≈

(
1 +

Φ(xa)

c2

)
dt (14)

Doing this for a separate point at xb leads to the same expression for dτb. If we solve for dt in the above
equation and substitute it into the expression for dτb, we can obtain

dτb ≈
(

1 +
Φ(xb)− Φ(xa)

c2

)
dτa, (15)

again neglecting powers greater than 1
c2 . This is the same expression for time dilation we derived earlier,

but now using the weak field metric.

3.2 Equations of Motions

We can now define motion of particles in this metric. We do this the same way as we calculated the time
difference between two particles within the metric, but now with some difference in the spatial coordinates
between events a and b. We write
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τab =

b∫
a

dτ =

b∫
a

(
−ds

2

c2

)1/2

(16)

=

b∫
a

[
−
(

1 +
2Φ

c2

)
(cdt)

2
+

1

c2

(
1− 2Φ

c2

)(
dx2 + dy2 + dz2

)]1/2
(17)

This expression can be simplified somewhat if we assume that we can use the time coordinate as a parameter
for the spatial coordinates. We can then extract a factor of dt from each term. Then, the spatial coordinate
term can be written as ẋ2 + ẏ2 + ż2 = v2, where v = ||v|| is the spatial velocity of the particle. The proper
time can then be written as

τab =

b∫
a

dt

[(
1 +

2Φ

c2

)
− v2

c2

(
1− 2Φ

c2

)]
(18)

Since we neglect terms of higher order than 1
c2 , we are left with

τab ≈
b∫
a

dt

[
1− 1

c2

(
1

2
v2 − Φ

)]
(19)

In general relativity, that the path taken by the particle is one which extremizes the proper time. Therefore,
to solve for the equations of motion, we need to extremize the integral∫ b

a

dt

(
1

2
v2 − Φ

)
(20)

We use the calculus of variations to do this, with a Lagrangian equal to the argument of the integral. Using
the Lagrangian equations of motion, we obtain

d

dt

∂L

∂q̇
=
∂L

∂q
(21)

=⇒ d2x

dt2
= −∇Φ, (22)

where x is a vector of the spatial coordinates. From this, we see that this first order approximation in our
metric results in the Newtonian equations of motion.

4 The Covariant Derivative

4.1 Derivatives of Scalars

Before we can discuss a first order approximation of rotating bodies, we first must develop our notion of the
derivative. which will help us with this problem. We first look at taking the derivative of a scalar function.
We define the derivative of a scalar function f along a curve with can be parameterized with respect to some
σ as

df

dσ
= lim
ε→0

f (xα(σ + ε))− f (xα(σ))

ε
=
dxα

dσ

∂f

∂xα
. (23)

We can define the dxα

dσ as a vector tα, which will be tangent to the curve along which we are taking the
derivative at all points. We can therefore define the total derivative as

d

dσ
= tα

∂

∂xα
. (24)
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Figure 1: Demonstration of parallel transport, which allows us to take the derivative of a vector.

4.2 Derivatives of Vectors

The next step to take is to define the derivative of a vector. The issue with derivatives of vectors is that the
derivative involves looking at how a vector changes at different points in spacetime, but the basic properties
of vectors, such as addition and subtraction, are only defined at a single point. Any changes in the coordinate
where the vector is defined will also lead to changes in the spacetime for non-flat geometries. To remedy
this issue, we start in the flat, Cartesian case. To take care of the fact the vectors are defined at different
points, we can move the translated vectors back to the point of the original vector along a path parallel to
the translation vector. This process is called parallel transport, and it shown in figure 1. This assists us in
non-flat spacetime as we can treat any point in any non-flat geometry as being locally equivalent to a flat
spacetime. We can then define the covariant derivative in some direction t as

∇tv (xα) = lim
n→∞

v (xα + tαε)‖ − v (xα)

ε
, (25)

where the ‖ represents that the vector has been moved back to the original point by parallel transport. In
flat spacetime time (or a local inertial frame of curved spacetime), the parallel transport does not change
the coordinates of the vector, and we can write the derivative in the same way we did for scalars, as

(∇tv)
α

= tβ
∂vα

∂xβ
, (26)

which can also be written as

∇βvα =
∂vα

∂xβ
. (27)

This equation only works in flat spacetime with Cartesian coordinates, as the coordinates of the vector
may change when undergoing parallel transport even when in flat, non-Cartesian coordinates, such as spher-
ical coordinates. We expect the parallel transported vector to be the sum of the original vector and the
changes in the vector due to the change in the coordinates. Generally, we can write this as
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vα‖ (xα) = vα
(
xδ + εtδ

)
+ Γαβγx

δvγ(xδ)
(
εtβ
)
, (28)

where Γαβγ can be shown to be the Christoffel symbols. Taking the covariant derivative of this expression,
we obtain

∇βvα =
∂vα

∂xβ
+ Γαβγv

γ . (29)

We can then use this equation to obtain a concise definition of a geodesic. To do this, we note that in a
local inertial frame, any geodesic can be defined as a straight line. A straight line can be defined as a curve
whose tangent vector at any point along the line will be propagated along the line itself. Take u to be such
a tangent vector. If we take the derivative of u along itself, by the previous condition, we have

(∇uu)
α

= uβ
(
∂uα

∂xβ
+ Γαβγu

γ

)
= 0, (30)

since we know uα = dxα

dτ . Therefore, in order for a curve to be a geodesic, we must have that

∇uu = 0. (31)

5 Slow Rotations

Now that we have developed a rigorous way to determine the geodesic equation, we can investigate the effect
rotations have on gravity. We would expect there to be some effect, as we know the rotations of a spherical
object causes it to compress, making it no longer spherical. For instance, the sun rotates with a period of
27 days, causing it to be slightly oblong. However, we can find that even when we neglect the higher order
terms in angular momentum which cause the deformation of spherical objects, we still find a change in the
gravitational field. This is because the gravitational fields are affected not only by the mass of the object,
but also by its motion.

5.1 A Gyroscope Orbiting A Nonrotating Body

We can think of the affect of this rotation as “dragging” the inertial frames along with it. That is, the
frames of reference with respect to the rotations may be thought of as inertial frames of reference with
a small induced angular moment associated with them. To observe this dragging, we can imagine a test
gyroscope in one of these frames of reference. A gyroscope can be thought of as an object which has not
only a four-velocity u(τ), but also a four-spin s(τ). If we choose a local inertial frame where the gyroscope
is at rest, the spin takes on the form sα(τ) = (0, ~s ), whereas the velocity takes on the form uα(τ) = (1,~0 ).
Therefore, we obtain the condition

s · u = 0, (32)

which can be shown to be valid for any frame of reference. We already know that the velocity of the gyroscope
must satisfy ∇uu = 0. However, we have the same condition for the spin as well. That is, we have ∇us = 0,
which is known as the gyroscope equation.

As an example, consider a gyroscope in a circular orbit around a nonrotating sphere. In the reference
frame of the gyroscope, the magnitude of the spin remains constant, and if it starts in the equatorial plane,
it will remain in the equatorial plane. As the gyroscope orbits around the sphere, the spin will begin to
precess. We can measure the angle which the gyroscope precesses as some ∆φ. We derive this expression for

5



the ∆φ by using the metric for the Schwarzschild geometry, since we have assumed the sphere is nonrotating
initially. We have for the line element

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2) (33)

We assume we are at the Schwarzschild radius R, and that θ = π
2 , since we are in the equatorial plane. Then

the only spatial, nonzero component of the velocity is uφ, which we can write as

uφ =
dφ

dτ
=
dφ

t.

dt

dτ
= Ωut, (34)

where we have defined Ω = dφ
t.

as the angular velocity. We can then define u as u = ut(1, 0, 0,Ω). To solve

for s, we first note that sθ = 0, since the precession only occurs in the equatorial plane. We solve for st by
using the condition specified by 32.

s · u = −
(

1− 2M

R

)
stut +R2sφuφ = 0 (35)

=⇒ st = R2Ω

(
1− 2M

R

)−1
sφ (36)

To solve for the sr and the sφ components, we use the gyroscope equation, substituting in the appropriate
Christoffel symbols.

∇us = 0

=⇒ dst

dt
− (R− 3M) Ωsφ = 0 (37)

dsφ

dt
+

Ω

R
sr = 0 (38)

Solving for sφ first, we get

d2sφ

dt2
+

(
1− 3M

R

)
Ω2sφ = 0 (39)

=⇒ sφ(t) = −s
(

1− 2M

R

)1/2(
Ω

ωR

)
sin(ωt), (40)

where we have used the initial condition that sφ(0) = 0, defined s to be the magnitude of s, and defined

ω =

(
1− 3M

R

)1/2

Ω. (41)

We can then define the determine the radial component of s

sr(t) = s

(
1− 2M

R

)1/2

cos(ωt). (42)

We choose this normalization so that (s · s)1/2 = s. To determine the angle of the precession, ∆φ, we project
the direction of the spin after one period (t = 2πΩ) onto the direction of the initial spin. According to the
equations we derived, the initial spin is in the r̂ direction. Therefore, we have
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(s
s

)
· r̂ = cos

(
2π
ω

Ω

)
= cos

[
2π

(
1− 3M

R

)1/2
]
. (43)

The change in the angle per orbit can therefore be written as

∆φ = 2π

[
1−

(
1− 3M

R

)1/2
]

(44)

5.2 The Effect of Slow Rotations Rotation on Spacetime

With the precession of a gyroscope orbiting a nonrotating body determined, we can begin to investigate the
effects of a slowly rotating body. In this scenario, we assume that angular momentum (J) terms of O(J2)
or higher are negligible. Therefore, our metric becomes

ds2 = ds2Schwarzschild −
4GJ

c3r2
sin2 θ(r dφ)(c dt) +O(J2) (45)

To study this metric, we look at the case of a gyroscope freely falling towards a slowly rotating spherical
body along the line of its rotational axis. In the case of the nonrotating object, the spin would not precess
as the gyroscope fell, as we have a symmetry in the φ coordinate in the Schwarzschild metric when we take
φ → −φ. However, in the metric of the slowly rotating object, this is no longer the case. To determine
this precession, we need to again use the gyroscope equation. To do this, we first convert the metric from
spherical coordinates into Cartesian, as this will ease the difficulty of calculations.

ds2 = (ds2)Schwarzschild −
4GJ

c3r2
(c dt)

(
x dy − y dx

r

)
(46)

To solve the gyroscope equation, we also assume that terms of the order 1/c4 are negligible. This means any
terms in the Schwarzschild geometry of order 1/c2 cannot contribute, as we get terms of 1/c5 when they are
multiplied by the rotational correction term become of order 1/c5 or higher. This means we can use a flat
spacetime metric instead of the Schwarzschild metric for our calculations. In addition to this, we assume
that the gyroscope is moving purely along the z-axis. Therefore, we can write the velocity and spin of the
gyroscope as

uα = (ut, 0, 0, uz) (47)

sα = (0, sx, sy, 0) (48)

To solve the gyroscope equation, we use the appropriate Christoffel symbols. The only nonvanishing Christof-
fel symbols of order less than 1/c4 are

Γxty =
2GJ

c2z3
(49)

Γytx = −2GJ

c2z3
. (50)

With these, we obtain the following expressions for the gyroscope equation

dsx

dt
= −2GJ

c2z3
sy (51)

dsy

dt
= +

2GJ

c2z3
sx (52)
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This is the equation for two coupled simple harmonic oscillators. We can see that the precession of the
gyroscope is in the same direction as the rotation of the body the gyroscope is falling towards. We can also
note that the precession is the same whether it is measured from the frame of the gyroscope or from a frame
in which the center of the body it is falling towards is motionless. This is because the precession is transverse
to the direction of motion, and is therefore not affected by time dilation.

The rate of precession at some height above the body is

ΩLT =
2GJ

c2z3
, (53)

which is called the Lense-Thirring precession. We can measure the Lense-Thirring precession along an axis
other than the axis which the body is rotating around by using

~ΩLT =
G

c2r3

[
3
(
~J · r̂

)
r̂ − ~J

]
, (54)

where arrows have been used to denote three-vectors. Interestingly enough, this is similar to the dipole term
in a multipole expansion for a charge distribution, with ~J acting as the dipole moment. We can see the
effect of the Lense-Thirring precession in conjunction with the geodetic precession caused by orbital motion
in figure 2.

Figure 2: The precession of the spin of a gyroscope due to both Lense-Thirring and geodetic precession [2].

6 Conclusion

We see that we can gain a wealth of information about various complicated systems by simply looking at first
order approximations. By taking the first order approximations to our metric, we can obtain a geometric
version of the Newtonian equations of motion. If we have derived the equations for a geodesic, we also fairly
simply look at the effects the rotations of an object to the first order. This gives us basic ideas about how
this rotation will affect objects in its orbit, including predictions of the precession. With these calculations,
we are fully prepared to look into higher order terms, as we have a good idea of the limiting behavior of
these physical phenomenon.
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