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1 Introduction

A method is more important than a discovery, since the right method will lead to new and
even more important discoveries.

Lev Landau (1908-1968)

The objective of this course was to introduce ourselves to quantum information theory, a booming
topic in physics with tremendous practical applications. This paper is based on a lecture I gave for
the Kapitza Society.

In the first section we will learn about the density operator: a powerful computing tool in quan-
tum mechanics. We will then have a brief overview of Lagrange multipliers and how to use them
to maximize entropy and retrieve the canonical ensemble’s properties. Finally, we will revealed a
surprising relation between statistical and quantum mechanics.

2 The Density Operator

2.1 Quantum Mechanical Ensembles

We generally may not have perfect knowledge of a prepared quantum state. Suppose a third party,
Bob, prepares a state for us and only gives a probabilistic description of it, i.e., Bob selects |ψx〉 with
probability pX(x), where pX is the probability distribution for the random variable X, and x is in
some alphabet χ. We can summarize this information by defining an ensemble E of quantum states

E ≡ {pX(x), |ψx〉}xεχ (1)

For example, E =
{(

1
3
, |1〉

)
;
(

2
3
, |3〉

)}
. If this ensemble is span by {|0〉 , |1〉 , |2〉 , |3〉}, then the state

is |0〉 with probability 0, |1〉 with probability 1
3
, |2〉 with probability 0, and |3〉 with probability 2

3
.

Of course, the sum of the probabilities adds up to 1.
Consider a system with

E = {pi, |ψi〉}iεN (2)

with 〈ψi|ψj〉 = δij. Suppose i = 1, then E = {p1, |ψ1〉} = {1, |ψ1〉}. If we measure an observable Â
in E , then 〈

Â
〉

= 〈ψ1| Â |ψ1〉

= 1 〈ψ1| Â |ψ1〉
= p1 〈ψ1| Â |ψ1〉

(3)

Now, what if E = {(p1, |ψ1〉) ; (p2, |ψ2〉)}? If you think as p1 and p2 as giving weight to their
corresponding state’s expectation value, you can guess〈

Â
〉

= p1 〈ψ1| Â |ψ1〉+ p2 〈ψ2| Â |ψ2〉

and finally, if E = {pi, |ψi〉}iεN , then〈
Â
〉

=
∑
i

pi 〈ψi| Â |ψi〉 (4)
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Claim:

I =
∑
n

|n〉 〈n| (5)

where {|n〉}nεN is a complete set, i. e., δnm = 〈n|m〉, and I is the identity operator.

Proof:

I |m〉 =
∑

n |n〉 〈n|m〉 =
∑

n |n〉 δnm = |m〉
QED

Thus, 〈
Â
〉

=
∑
i

pi 〈ψi| Â |ψi〉

=
∑
i

pi 〈ψi| IÂ |ψi〉

=
∑
i

pi 〈ψi|

(∑
n

|n〉 〈n|

)
Â |ψi〉

=
∑
i

pi
∑
n

〈n| Â |ψi〉 〈ψi|n〉

=
∑
n

〈n| Â

(∑
i

pi |ψi〉 〈ψi|

)
|n〉

=
∑
n

〈n| Âρ̂ |n〉

(6)

where

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (7)

is the density operator.

For some matrix B, we have Bij = 〈i|B |j〉, thus
〈
Â
〉

=
∑

n(Âρ̂)nn = Tr(Âρ̂), which gives the

very useful and important result 〈
Â
〉

= Tr(Âρ̂) (8)

Note that the trace is independent of which complete set you use. Suppose {|φi〉}iεN is a complete
set, then using (5) we get

Tr(B) =
∑
i

〈i|B |i〉 =
∑
i

〈i|BI |i〉

=
∑
i

〈i|B

(∑
j

|φj〉 〈φj|

)
|i〉

=
∑
j

〈φj|

(∑
i

|i〉 〈i|

)
B |φj〉

=
∑
j

〈φj|B |φj〉

(9)

thus, just think of the complete basis {|δi〉}iεN , where for δi the ith component is 1 and the other
components are 0, to build your intuition.
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Why is this density operator so important to us? We already saw that it makes finding the
expectation of an observable trivial, but that’s not it. It also allows you to find the probability of
measuring a particular eigenvalue from your ensemble! To see this, consider an observable Â, so that
Â |a〉 = a |a〉, with

〈
a
∣∣a′〉 = δaa′ . What is the probability of measuring a particular eigenvalue a?

From the law of total probability, we get

p(a) =
∑

i (probability of getting |ψi〉)×(probability of getting |a〉 given that you got |ψi〉)

but the probability of getting |ψi〉 is just pi, and the probability of getting a given that you get
|ψi〉 is | 〈a|ψi〉 |2, which comes from the Bohr interpretation. If you’re not sure why this is true,
consider the complete set {|ni〉}iεN and some normalized quantum state |ψ〉, then

|ψ〉 =
∑
i

ni |ni〉 (10)

but 〈ψ|ψ〉 = 1, so

1 =
∑
i

∑
j

n∗inj 〈ni|nj〉 =
∑
i

∑
j

n∗injδij

=
∑
i

n∗ini =
∑
i

|ni|2
(11)

but we also have
∑

i pi = 1, where in this case pi is the probability of getting (measuring) |ψ〉.
The idea is to say that |ni|2 = pi, which is reasonable since the ni terms definitely seem to give some
weight to how big a role a given |ni〉 plays in the construction of |ψ〉. Finally, you can see from (10)
that nj = 〈nj|ψ〉, thus the probability of measuring |nj〉 given that your initial state is |ψ〉 would be
|nj|2 = | 〈nj|ψ〉 |2.

Going back to our p(a), we now understand why we have from the law of total probability

p(a) =
∑
i

pi| 〈a|ψi〉 |2 =
∑
i

pi 〈a|ψi〉 〈ψi|a〉

= 〈a|

(∑
i

pi |ψi〉 〈ψi|

)
|a〉

= 〈a| ρ̂ |a〉

(12)

Therefore, if you have ρ, you can find some of the most useful quantities in quantum mechanics
trivially.

We can make this a little bit more general.

Claim:

If the ensemble is given by E = {pX(x), |ψx〉}xεχ, we have

ρ̂ =
∑
xεχ

pX(x) |ψx〉 〈ψx| (13)

and

pJ(j) = Tr (Πj ρ̂) (14)
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Proof:

(13) is trivial to see from (7), but (14) is a bit harder. Recall that Πj = |j〉 〈j|, we can show the
equivalence between (14) and (12)

pJ(j) = Tr (Πj ρ̂) =
∑
i

〈φi|Πj ρ̂ |φi〉

=
∑
i

〈φi|j〉 〈j| ρ̂ |φi〉

=
∑
i

〈j| ρ̂ |φi〉 〈φi|j〉

= 〈j| ρ̂

(∑
i

|φi〉 〈φi|

)
|j〉

= 〈j| ρ̂I |j〉
= 〈j| ρ̂ |j〉

(15)

QED
Let’s see how all of this theory works in an actual example. Suppose we are working with

electrons. Bob tells us that an electron has a .5 chance of being in the state |z, ↑〉, and .5 chance of
being in the state |z, ↓〉. Then E =

{(
1
2
, |z, ↑〉

)
;
(

1
2
, |z, ↓〉

)}
. Thus, from (7), we get

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
1

2
|z, ↑〉 〈z, ↑|+ 1

2
|z, ↓〉 〈z, ↓| = 1

2

(
1 0
0 1

)
(16)

What if I ask you to find the probability of getting |x, ↑〉? Or the expectation value of Ŝx? Doing
this without using the density operator is not too difficult, you should try it before reading the rest.

Did you try yet? I’m going to put my trust in humankind’s righteousness and continue.

The probability of getting |x, ↑〉 is given by

ρ̂(|x, ↑〉) = 〈x, ↑| ρ̂ |x, ↑〉 =
1

4

(
1 1

)(1 0
0 1

)(
1
1

)
=

1

4

(
1 1

)(1
1

)
=

1

2
(17)

Hopefully you got the same thing doing it the long way. Now what about
〈
Ŝx

〉
= h̄

2
〈σ̂x〉?

〈σ̂x〉 = Tr(σ̂xρ̂) = Tr

{(
0 1
1 0

)(
1
2

0
0 1

2

)}
= Tr

{(
0 1

2
1
2

0

)}
= 0 (18)

2.2 Properties of the Density Operator

Claim 1: ρ̂ is Hermitian

Proof:

ρ̂† =

(∑
i

pi |ψi〉 〈ψi|

)†
=
∑
i

p∗i 〈ψi|
† |ψi〉†

=
∑
i

pi |ψi〉 〈ψi|

= ρ̂

(19)

QED
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Claim 2: Tr(ρ̂) = 1

Proof:

Tr(ρ̂) =
∑
n

〈n| ρ̂ |n〉 =
∑
n

〈n|

(∑
i

pi |ψi〉 〈ψi|

)
|n〉

=
∑
i

pi 〈ψi|

(∑
n

|n〉 〈n|

)
|ψi〉

=
∑
i

pi 〈ψi| I |ψi〉

=
∑
i

pi 〈ψi|ψi〉

=
∑
i

pi = 1

(20)

QED
where we used the normalization property of the wavefunction, and (5).

Claim 3: ρ̂ can be diagonalized to the following

ρ̂ =


p1 0 ... 0
0 p2 0 ... 0

.
.

.
p|χ|

 (21)

where |χ| is the size of the set.

Proof:

We have that ρ̂ =
∑

i pi |ψi〉 〈ψi|, thus

ρ̂ |ψk〉 =
∑
i

pi |ψi〉 δik = pk |ψk〉 (22)

so ρ̂ as eigenvectors {|ψ〉k}k with eigenvalues {pk}k. Let

M =
(
|ψ1〉 |ψ2〉 ...

∣∣ψ|χ|〉) (23)

Then

ρ̂M =
(
ρ̂ |ψ1〉 ρ̂ |ψ2〉 ... ρ̂

∣∣ψ|χ|〉) =
(
p1 |ψ1〉 p2 |ψ2〉 ... p|χ|

∣∣ψ|χ|〉) (24)

which we can rewrite in a more enlightening way

ρ̂M =
(
|ψ1〉 |ψ2〉 ...

∣∣ψ|χ|〉)

p1 0 ... 0
0 p2 0 ... 0

.
.

.
p|χ|

 = M


p1 0 ... 0
0 p2 0 ... 0

.
.

.
p|χ|

 (25)

if M is invertible, we get
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M−1ρ̂M =


p1 0 ... 0
0 p2 0 ... 0

.
.

.
p|χ|

 (26)

QED

2.3 Pure vs. Mixed Quantum States

Pure: We know the system is in a particular state |ψ〉 ⇒ E = {1, |ψ〉}.
Mixed: We don’t know the system is in a particular state |ψ〉, i.e., the system could be in several
states {|ψi〉}iεN ⇒ E = {pi, |ψi〉}iεN .

Using Claim 3, we can define pure and mixed quantum states using the density operator. A
mixed state would be given by (21), and a pure state would be given by

ρ̂ =


0 0 ... 0
0 0 0 ... 0

.
1

.
0

 (27)

since pk = 1 and pi = 0 for all i 6= k.
We will come back to this when we will be discussing statistical mechanics and entropy.

2.4 Why is ρ called the Density Operator〈
Â
〉

= Tr(Âρ̂) =
∑

m,n 〈n| Â |m〉 〈m| ρ̂ |n〉

which becomes for a continuous basis〈
Â
〉

=

∫
d3x

∫
d3x

′ 〈x| Â
∣∣∣x′〉〈x′∣∣∣ ρ̂ |x〉 (28)

Let’s focus on
〈
x
′∣∣ ρ̂ |x〉.

〈
x
′
∣∣∣ ρ̂ |x〉 =

〈
x
′
∣∣∣(∑

i

pi |ψi〉 〈ψi|

)
|x〉

=
∑
i

pi

〈
x
′
∣∣∣ψi〉 〈ψi|x〉

=
∑
i

piψi(x
′
)ψ∗i (x)

(29)

If x = x
′
, then 〈x| ρ̂ |x〉 =

∑
i pi|ψi(x)|2. Thus, the diagonal matrix elements are the weighted

sums of the probability densities of the states in the ensemble.
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3 The Canonical Ensemble

3.1 Lagrange Multipliers

Let S be a surface given by f(x, y, z) = c for some constant c. What if you want to find which point
on this surface is the closest to the origin? To do this we need some background. A curve on this
surface is defined by r(t) = (x(t), y(t), z(t)). Now, the derivative of this curve, r

′
(t), is tangent to the

curve at any point P = (x(t), y(t), z(t)). Let’s take one of them P0 = (x(0), y(0), z(0)) = (x0, y0, z0).
At P0, r

′
(t) is tangent to the curve and thus tangent to S, which means it lies on the tangent plane

of f(x, y, z) at P0. This means that if a vector is perpendicular to r
′
(t) at P0, then it is perpendicular

to the tangent plane of S at P0.

Claim: The gradient of f is perpendicular to r
′
(t) at any point.

If we can prove that ∇f |P0 · r
′
(t0) = 0 for some arbitrary point P0 we would be done. But

df

dt
|P0 =

∂f

∂x
|P0

dx

dt
|t0 +

∂f

∂y
|P0

dy

dt
|t0 +

∂f

∂z
|P0

dz

dt
|t0 = ∇f |P0 · r

′
(t0) (30)

but f(x.y.z) = c where c is constant, thus df
dt
|P0 = 0.

QED

FIG. 1. Lagrange Multipliers

Let’s go back to our minimization problem. Try the problem in two dimension, where S is a
curve. Take a compass and start drawing circles with a common center at the origin. Start from a
small one and increase the radius of the next one. Continue increasing the radius until a circle enters
in contact with S. This point on S is the closest one to the origin. We of course have the exact
same procedure in three dimension with circles being replaced by spheres. Let’s call this last sphere
G, defined by g(x, y, z) = x2 + y2 + z2 − r2 = 0. Note that g contains the minimization constraint
at the heart of the problem. Now, here is the trick, the tangent plane T , of G and S at the point of
contact is the same one! Therefore, recalling the claim we just proved, this means that ∇g and ∇f
are both perpendicular to this tangent plane, and so they are parallel to each other. This means
that

∇f = λ∇g (31)
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where g is the function containing the constraint, and λ is the famous Lagrange multipliers. The
general case is given by

∇f =
∑
i

λ∇gi (32)

3.2 Mixed States and Entropy

We know that the entropy of a system is given by

S = −k
∑
i

pilnpi = −kTr(ρ̂lnρ̂) (33)

ρ̂ is diagonalized. What are the {pi} in the minimum entropy state?
From (33) it’s easy to see that S is a of positive quantities ⇒ S ≥ 0 ⇒ Smin = 0. Recall that
we need

∑
i pi = 1, which means that pk = 1 and pi = 0 ∀i 6= k. This might ring a bell (no pun

intended), we have in this case a pure state. Thus, in order to have minimum entropy, an ensemble
must be composed of a pure state.

Now what about maximizing entropy? This is where Lagrange multipliers come handy. In this
case, f = S, and g =

∑
j pj − 1. Looking back at (32), we must have

∇
(
−k
∑
i

pilnpi

)
= λ∇

(∑
i

pi − 1

)
(34)

We can simplify this quite a bit

∇
(
−k
∑
i

pilnpi − λ

(∑
i

pi − 1

))
=
∑
i

(
−k(∇pi)lnpi − kpi

∇pi
pi
− λ∇pi

)
=
∑
i

(−k(lnpi + 1)− λ)∇pi

(35)

but ∇pi is arbitrary, thus

−k(lnpi + 1)− λ = 0⇐⇒ pi = e−
λ
k
−1 (36)

Using our constraint
∑

i pi = 1, we get

|χ|∑
i=1

e−
λ
k
−1 = 1⇐⇒ e−

λ
k
−1 =

1

|χ|
⇐⇒ pi =

1

|χ|
(37)

This means that in order to maximize entropy, we want a uniform distribution. This gives us
that a state is a maximally mixed state if every eigenvalue of the density operator is equal, i.e.,

ρ̂ =
1

|χ|


1 0 ... 0
0 1 0 ... 0

.
.

1

 =
1

|χ|
I (38)

Note that the entropy for the maximally mixed state is

S = −k
|χ|∑
i=1

pilnpi = −k
|χ|∑
i=1

1

|χ|
ln

1

|χ|
= kln|χ| (39)
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3.3 Statistical Mechanics

To some extent, statistical mechanics is an assumption about the density matrix for a macroscopic
system. The assumptions (constraints) are

(a)
∑

i pi = 1.

(b)
〈
Ĥ
〉

= E is known.

Constraint (b) can be expressed in a more useful way since from Schroedinger equation
Ĥ |ψk〉 = Ek |ψk〉 ⇒ 〈ψk| Ĥ |ψk〉 = Ek, which gives〈

Ĥ
〉

=
∑
k

pk 〈ψk| Ĥ |ψk〉 =
∑
k

pkEk = E (40)

Since we have two constraints, using equation (32) we have that

∇
(
−k
∑
i

pilnpi

)
= λ1∇

(∑
i

pi − 1

)
+ λ2∇

(∑
i

piEi − E

)
(41)

which we can simplify to

∇
(
−k
∑
i

pilnpi − λ1

(∑
i

pi − 1

)
− λ2∇

(∑
i

piEi − E

))
=
∑
i

(−k(lnpi + 1)− λ1 − λ2Ei)∇pi

(42)
but ∇pi is arbitrary, thus

−k(lnpi + 1)− λ1 − λ2Ei = 0⇐⇒ pi = e−
λ1
k
−λ2Ei

k
−1 (43)

Using our constraint
∑

i pi = 1, we get

e−
λ
k
−1 =

1

Z
(44)

with

Z =
∑
i

e−
λ2Ei
k (45)

Letting λ2

k
= β, we get the well known canonical ensemble equations

pi =
e−βEi

Z
(46)

and
Z =

∑
i

e−βEi (47)
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4 Quantum Mechanics and Statistical Mechanics

4.1 Mixed State, Pure State, and Temperature

The internal energy of a monoatomic gas is given by E = 3
2
NkT ⇒ E ∝ T , but looking back at

(47), we must have β ∝ 1
E

since the exponential must be unitless. These two relations imply that
β ∝ 1

T
. Thus,

T →∞⇒ β → 0+ ⇒ Z = |χ| ⇒ pi = 1
|χ|

This means that all states are equally probable, which is what we found for the maximally mixed
state. What about T → 0+? I’m sure you can guess what is about to happen

Z =
∑
i=0

e−βEi = e−βE0

∑
i=0

e−β(Ei−E0) = e−βE0 + e−βE0

∑
i=1

e−β(Ei−E0) (48)

therefore since Ei > E0 ∀ i > 0, we get

T → 0+ ⇒ β →∞⇒ Z → e−βE0 (49)

this means that

T → 0+ ⇒ β →∞⇒ pk =
e−βEk

Z
→ e−β(Ek−E0) (50)

thus, pk = 0 ∀ k 6= 0 and p0 = 1. Therefore all the particles are in the ground state E0. This
exactly what we found for a pure state.

4.2 Imaginary Statistical Mechanics

Definition: (Function of a Hermitian Operator) Suppose that a Hermitian operator A has a spectral
decomposition A =

∑
i ai |i〉 〈i| for some orthonormal basis {|i〉}. Then the operator f(A) for some

function f is defined as follows:

f(A) ≡
∑
i

f(ai) |i〉 〈i| (51)

Recall that Ĥ |ψk〉 = Ek |ψk〉, therefore Ĥ =
∑

iEi |ψi〉 〈ψi|. Using the above definition, this
means that

e−βĤ =
∑
i

e−βEi |ψi〉 〈ψi| (52)

Note that this implies

〈ψk| e−βĤ |ψk〉 =
∑
i

e−βEiδkiδik = e−βEk (53)

From this it is trivial to see that

ρ̂ =
1

Z
e−βĤ (54)

and

Z =
∑
i

e−βEi = Tr
(
e−βĤ

)
(55)
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In quantum mechanics, we can determine how a quantum state evolves with time using the
operator U(t).

|ψ(t)〉 = U(t) |ψ(0)〉 (56)

We can get it from looking at Schroedinger equation.

Ĥ |ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 ⇒ |ψ(t)〉 = e

−iĤt
h̄ |ψ(0)〉 (57)

thus, U(t) = e
−iĤt
h̄ .

By making the change

t→ −iβh̄ (58)

we get

U(t)→ U(−iβh̄) = e−βĤ (59)

which gives us the startling result that

Tr[U(−iβh̄)] = Tr
(
e−βĤ

)
= Z (60)

Therefore, statistical mechanics can be perceived as quantum mechanics in imaginary time. An
incredible result that might sound familiar if you have studied special relativity.

5 Conclusion

The task is, not so much to see what no one has yet seen; but to think what nobody has
yet thought, about that which everybody sees.

Erwin Schroedinger (1887-1961)

Through the use of the density operator, Lagrange multipliers, and entropy, we have discovered an
incredible relationship between statistical and quantum mechanics. These types of transformations
are known as Wick rotations and create strange links between many areas in physics. For example,
special relativity an classical physics are linked by the transformation t → it. To see this, recall
that the dot product invariance between two inertial frames S and S ′ in special relativity give
z2 − t2 = (z

′
)2 − (t

′
)2 with S ′ traveling at velocity vẑ with respect to S. This becomes the classical

Euclidean dot product z2 +T 2 = (z
′
)2 + (T

′
)2 if you make the following change t→ iT . It is easy to

see from this last equation that the two points lie on the circumference of a circle and must therefore
be equivalent through a rotation, i.e.(

z
′

T
′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
z
T

)
(61)

thus,

z
′
= z cos θ − T sin θ

T
′
=T cos θ + z sin θ

(62)

but we must have z
′
= 0 when z = vt, thus the first equation gives

tan θ =
vt

T
= −iv (63)

11



but then T
′

= cos θ(z tan θ + T ). We can simplify this by using the fact that sec2 θ + tan2 θ = 1
we get sec θ =

√
1− v2 = 1

cosθ
. Thus T

′
= 1√

1−v2 (it− izv). But T
′
= it

′
, so we finally get

t
′
=γ(t− vz)

z
′
=γ(z − vt)

(64)

This approach shows even more clearly that we can see the Lorentz transformations as a rotation
through an imaginary angle iθ in the cT − z plane, or equivalently, the ict− z plane.
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