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1 Introduction

In this short paper, we will demonstrate some of the simplest calculations in quantum
electrodynamics (QED), leading to the lowest-order experimental predictions for cross-
sections.

In particular, we will first define what (differential) cross-sections are. Then, we
will discuss spin/polarization sums and averages, which are important for experimen-
tal predictions. This arises because our experimental set-ups are agnostic to the
spin/polarization states of the external particles. Afterwards, we will calculate in
detail the cross-sections for one of the simplest and the most common processes in
QED: e+e− → l+l−. We treat the case where l = e separately, since that requires
much more calculations.
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2 QED Cross-Section, Spin, and Polarization

Let us label the initial and final states of a quantum system as |i〉 and |f〉 respectively.
Then, the transition probability from |i〉 to |f〉 is given by

P (i→ f) = |Sfi|2 , (1)

where the S-matrix element Sfi is defined as

Sfi ≡ 〈f |S |i〉 (2)

and signifies the transition amplitude from a state |i〉 to a state |f〉 within a time
duration T and a volume V , not explicitly included in eq. 1.

More specifically, consider a process where we begin with an initial state i with two
particles whose 4-momenta are pi = (Ei,pi), i = 1, 2, and end up with a final state f

with N particles whose 4-momenta are p′f =
(
E ′f ,p

′
f

)
, f = 1, 2, ... , N . In this paper,

we will only discuss QED processes, and hence the particles involved are leptons and
photons only.

Then, if we specify the time T and the spatial volume V under consideration, the
S-matrix element is given by

Sfi,TV = δfi + δTV

(∑
f

p′f −
∑
i

pi

)

×
∏
i

(
1

2V Ei

)1/2∏
f

(
1

2V E ′f

)1/2∏
l

(2ml)
1/2M ,

where the index l runs over all external leptons in the process and δTV is defined as

δTV

(∑
f

p′f −
∑
i

pi

)
≡
∫ T/2

−T/2
dt

∫
V

d3x exp

ixµ(∑
f

p′f −
∑
i

pi

)
µ

 .

M is called the invariant amplitude because this quantity is Lorentz-invariant (or the
Feynman amplitude); it is determined by the relevant Feynman diagrams for specific
processes under consideration.

Now, suppose T and V are very large. Then,

δTV

(∑
f

p′f −
∑
i

pi

)
' (2π)4 δ(4)

(∑
f

p′f −
∑
i

pi

)

due to Fourier transform, and[
δTV

(∑
f

p′f −
∑
i

pi

)]2

= TV (2π)4 δ(4)

(∑
f

p′f −
∑
i

pi

)
.

3



Then, the transition probability per unit time is

w =
|Sfi,TV |2

T

= V (2π)4 δ(4)

(∑
f

p′f −
∑
i

pi

)

×

(∏
i

1

2V Ei

)(∏
f

1

2V E ′f

)(∏
l

2ml

)
|M|2 .

(3)

This result only holds for one exact final state f . Practically, we are interested in

the transition rate to a set of final states within some momenta range
(
p′
f ,p

′
f + d3p′

f

)
.

This gives eq. 3 an additional factor of
∏

f

V d3p′
f

(2π)3
. Furthermore, it is useful to normalize

the transition rate to one scattering/colliding center (recall that we have only 2 particles
initially) in the volume and unit incident flux; this requires an additional factor of
V/vrel, where vrel is the relative velocity of the two initial particles. Then, we obtain a
quantity called the differential cross-section which equals

dσ = w
V

vrel

∏
f

V d3p′
f

(2π)3

= (2π)4 δ(4)

(∑
f

p′f −
∑
i

pi

)
1

4E1E2vrel

(∏
l

2ml

)(∏
f

d3p′
f

(2π)3 2E ′f

)
|M|2 . (4)

Note that the two factors of V from the initial-state product are canceled with one
factor in w and another in the normalization factor V/vrel.

Assuming that the two initial particles are moving co-linearly, one particularly
useful frame of reference is the center-of-momentum frame (CoM)—it is also often
called the center-of-mass frame, which is a misnomer. In this frame, p1 = −p2, so the
relative velocity of the two initial particles is

vrel =
|p1|
E1

+
|p2|
E2

=
E1 + E2

E1E2

|p1| . (5)

Now, we consider the specific case in which there are only two particles in the final
state as well. Then, eq. 4 becomes

dσ = f(p′1, p
′
2) δ(4)(p′1 + p′2 − p1 − p2) d3p′

1 d3p′
2 , (6)

where

f(p′1, p
′
2) ≡ |M|2

64π2vrelE1E2E ′1E
′
2

∏
l

(2ml) . (7)

4



However, due to energy- and momentum-conservations, the final state 4-momenta
are not truly independent. For instance, in the CoM frame, p1 = −p2, and p′

1 = −p′
2.

To write the cross-section in more useful independent variables, we first integrate
eq. 6 over p′

2 and obtain

dσ = f(p′1, p
′
2) δ(E ′1 + E ′2 − E1 − E2)

∣∣p′
1

∣∣2 d
∣∣p′

1

∣∣dΩ′
1 ,

where we now have the momentum-conservation condition p′
2 = p1 + p2 − p′

1. Inte-
grating over

∣∣p′
1

∣∣, we obtain

dσ = f(p′1, p
′
2)
∣∣p′

1

∣∣2dΩ′
1

[
∂ (E ′1 + E ′2 − E1 − E2)

∂
∣∣p′

1

∣∣
]−1

, (8)

where we have the momentum- and energy-conservation condition p′2 = p1 + p2 − p′1.
As mentioned, in the CoM frame, the final-state momenta are not independent:

p′
1 = −p′

2. Hence,

∂ (E ′1 + E ′2 − E1 − E2)

∂
∣∣p′

1

∣∣ =
∂ (E ′1 + E ′2)

∂
∣∣p′

1

∣∣
=

∣∣p′
1

∣∣
E ′1

+

∣∣p′
1

∣∣
E ′2

=
E1 + E2

E ′1E
′
2

∣∣p′
1

∣∣ , (9)

where we have used the CoM condition,
∣∣p′

1

∣∣ =
∣∣p′

2

∣∣, and the energy-conservation
condition, E ′1 + E ′2 = E1 + E2.

Substituting eqs. 5, 7, and 9 into eq. 8, we obtain the CoM differential cross-section(
dσ

dΩ′
1

)
CoM

=
1

64π2 (E1 + E2)2

∣∣p′
1

∣∣
|p1|

(∏
l

2ml

)
|M|2 . (10)

However, even this result is too ‘specific’ for empirical purposes. That is, the initial
and the final states of the particles are still specified completely. In particular, the
spin and the polarization states of the relevant leptons and photons must be specified;
these are included within the invariant amplitude M. However, in most (if not all)
practical experimental settings, the incoming particles are typically not polarized, and
the polarizations of the outgoing particles are not detected either—hereon, the term
polarization will be used loosely to refer the spins of leptons as well as the photon
polarizations.

Hence, in order to obtain practical cross-sections for experimental predictions, we
need to average over the different polarizations of the incoming particles, to which
we are agnostic. Similarly, we need to sum up the different outgoing particles’ polar-
ization states; since processes with different final polarization states are disjoint, the
probabilities can be simply added.

5



For instance, consider a QED process that has one initial-state lepton with 4-
momentum p & spin r and one final-state lepton with 4-momentum p′ & spin s. Then,
its invariant amplitude is of the form

Mrs = ūs(p
′)Γur(p) , (11)

where u and ū are the positive-energy Dirac spinors and Γ is a 4-by-4 matrix made
out of γ-matrices. The specific form of Γ depends on the specific QED process under
consideration.

As mentioned, eq. 11 is too specific and limited to fixed spin states r, s. If we want
to obtain the experimentally useful unpolarized cross-section, we need to average over
r and sum over s. Hence, we get a cross-section proportional to the quantity

X ≡ 1

2

2∑
r=1

2∑
s=1

|Mrs|2 . (12)

Using the fact that γ0 is real & symmetric and that (γ0)2 = I, we can compute

(Mrs)
∗ = [ūs(p

′) Γur(p)]
∗

=
[
u†s(p

′)γ0 Γur(p)
]∗

= uT
s (p′)γ0 Γ∗ u∗r(p)

= u†r(p) Γ† γ0us(p
′)

= u†r(p)
(
γ0
)2

Γ† γ0us(p
′)

= ūr(p)
(
γ0Γ†γ0

)
us(p

′)

= ūr(p) Γ̃us(p
′) , (13)

where we have defined
Γ̃ ≡ γ0Γ†γ0 .

Using eqs. 11 and 13 and explicitly writing out the spinor indices as α, β, γ, δ, we
obtain

X =
1

2

2∑
r=1

2∑
s=1

[ūαs (p′)Γαβu
β
s (p)] [ūγr (p)Γ̃γδu

δ
s(p
′)]

=
1

2

(
2∑
s=1

uδs(p
′)ūαs (p′)

)
Γαβ

(
2∑
r=1

uβs (p)ūγs (p)

)
Γ̃γδ

=
1

2
Tr

[
/p′ +m

2m
Γ
/p+m

2m
Γ̃

]
, (14)

where we have used the completeness relation

2∑
r=1

us(p)ūs(p) =
/p+m

2m
.
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Similar calculations can be applied to processes involving anti-leptons using the
identity

2∑
r=1

vs(p)v̄s(p) =
/p−m

2m
.

Similarly, we should consider the polarizations of external photons as well as leptons.
For instance, consider a process with one final external photon. Then, the unpolarized
cross-section is proportional to the quantity

X ≡
∑
r

|Mr|2 =
∑
r

|εµr (k)Mµ|2 , (15)

where εµr (k) is the polarization 4-vector corresponding to a polarization state r and a
wave 4-vector k. Note that k0 = |k|.

Since the quantitiesM and therefore X are gauge-independent, it is convenient to
work with the Lorenz gauge. That is, we let the 4-potential Aµ of the external photon
satisfy the condition

∂µA
µ = 0 , (16)

which describes a simple transverse wave, in agreement with the common intuition of
free real radiation.

Because the quantity Mr = εµrMµ is gauge-invariant and we chose a transverse-
wave gauge, we have the property

kµMµ = 0 , (17)

and we can choose a coordinate system such that kµ = (κ, 0, 0, κ).
Then, from eq. 15, we can conclude that the unpolarized cross-section must be

proportional to

2∑
r=1

|Mr|2 =MµM∗
ν

2∑
r=1

εµr ε
ν
r

= −MµM∗
µ , (18)

where we have used the gauge condition eq. 17 and the completeness relation for real
photons, i.e.,

2∑
r=1

εµr ε
ν
r = −gµν +

1

2

(
kµk̃ν + k̃µkν

)
,

where k̃µ = (κ−1, 0, 0,−κ−1).
Now, we can use these results to calculate some basic QED cross-sections.
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3 e+e− → l+l− Process (l 6= e)

Consider the collision process in which an electron-positron collides and annihilates to
produce a lepton-anti-lepton pair. If the polarizations of the external leptons are all
specified, this can be written as

e+(p1, r1) + e−(p2, r2) −→ l+(p′1, s1) + l−(p′2, s2) (19)

where the p’s denote 3-momenta, r’s and s’s denote spin states, and the primes label
the final state.

For simplicity, we will let the final state leptons (a lepton and an anti-lepton) be
muons or tauons, but not electrons.

Then, the first-order Feynman diagram corresponding to the process 19 is given by
fig. 1. Its invariant amplitude is

M(r1, r2, s1, s2) = ie2 [ūl−(p′2, s2)γµvl+(p′1, s1)]︸ ︷︷ ︸
final lepton vertex

1

(p1 + p2)2︸ ︷︷ ︸
photon propagator

[v̄e+(p1, r1)γµue−(p2, r2)]︸ ︷︷ ︸
initial electron vertex

,

(20)
and the complex conjugate is

M∗(r1, r2, s1, s2) = −ie2 [v̄l+(p′1, s1)γµul−(p′2, s2)]
1

(p1 + p2)2
[ūe−(p2, r2)γµve+(p1, r1)] ,

where we have used the γ-matrix identity: γµ† = γ0γµγ0.
Averaging over r’s and summing over s’s (generalizing eq. 14), we obtain the quan-

tity proportional to the unpolarized cross-section

X ≡ 1

4

∑
r1

∑
r2

∑
s1

∑
s2

|M(r1, r2, s1, s2)|2

=
e4

4(p1 + p2)4
AlµνB

µν
e

=
e4

4(p1 + p2)4
Tr

[
/p′2 +ml

2ml

γµ
/p′1 −ml

2ml

γν

]
Tr

[
/p1
−me

2me

γµ
/p2

+me

2me

γν
]
. (21)

e+
r1

e−r2

l+s1

l−s2

p1

p2

γ

p1 + p2

p′1

p′2

Figure 1: Lowest-order Feynman diagram for the process e+e− → l+l−

with complete polarization-specification.
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Now, we use γ-matrix trace theorems to calculate the quantities in eq. 21. In
particular,

Tr(γµ1 ...γµn) = 0 if n = odd ,

Tr(γµγν) = 4gµν ,

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) .

Then, we get

Alµν = Tr

[
/p′2 +ml

2ml

γµ
/p′1 −ml

2ml

γν

]
=

1

4m2
l

Tr
[
/p
′
2
γµ/p

′
1
γν −m2

l γµγν

]
=

1

4m2
l

[
p′ρ2 p

′σ
1 Tr (γργµγσγν)−m2

l Tr (γµγν)
]

=
1

4m2
l

[
4p′ρ2 p

′σ
1 (gρµgσν − gρσgµν + gρνgµσ)− 4m2

l gµν
]

=
1

m2
l

[
p′1µp

′
2ν + p′2µp

′
1ν − (m2

l + p′1p
′
2)gµν

]
and similarly‘

Bµν
e =

1

m2
e

[
pµ1p

ν
2 + pµ2p

ν
1 − (m2

e + p1p2)gµν
]
.

Substituting into eq. 21, we get

X =
e4

2m2
em

2
l (p1 + p2)4

[
(p1p

′
1)(p2p

′
2) + (p1p

′
2)(p2p

′
1) +m2

ep
′
1p
′
2 +m2

l p1p2 + 2m2
em

2
l

]
Now, to simplify this expression further, we consider a specific frame of reference:

the center-of-momentum frame. In this frame, p1 = −p2, p′1 = −p′2, and E1 = E2 =
E ′1 = E ′2 = E. The kinematics of e+e− → l+l− process is simply described by the angle
θ between p1 & p′1 and the magnitudes of the 3-momenta p ≡ |p| and p′ ≡ |p′|. In
summary, we have the following results:

p1p
′
1 = p2p

′
2 = E2 − pp′ cos θ , p1p

′
2 = p2p

′
1 = E2 + pp′ cos θ ,

p1p2 = E2 + p2 , p′1p
′
2 = E2 + p′2 ,

(p1 + p2)2 = 4E2 .

(22)

Therefore, we obtain the final unpolarized differential cross-section for the CoM
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frame:(
dσ

dΩ

)
CoM

=
1

64π2(E1 + E2)2

|p′1|
|p1|

(∏
l

2ml

)
X

=
1

256π2E2

p′

p
16m2

em
2
l

e4

32m2
em

2
lE

4

×
[
2E4 + 2p2p′2 cos2 θ +m2

e(E
2 + p′2) +m2

l (E
2 + p2) + 2m2

em
2
l

]
≈ α2

16E4

(
p′

E

)[
E2 +m2

l + p′2 cos2 θ
]
, (23)

where α ≡ e2/(4π) and we have made the approximation me � ml ≤ E and therefore
p2 ≈ E2.

The total cross-section is obtained by integrating over the whole 4π steradian solid
angle:

σCoM =
πα2

4E4

(
p′

E

)[
E2 +m2

l +
1

3
p′2
]
. (24)

In even more high-energy cases, we have E � ml which also implies p′ ≈ E.
Therefore, (

dσ

dΩ

)
CoM

=
α2

16E2

(
1 + cos2 θ

)
,

σCoM =
πα2

3E2
.

4 Bhabha Scattering: e+e− → e+e− Process

In the previous section, we ignored the case where the final state lepton pair is an
electron-positron pair. This is because there are two lowest-order Feynman diagrams
that contribute to this process. In addition to the pair annihilation-creation process
discussed previously, there is also elastic scattering of the electron and the positron by
simply exchanging a photon. See fig. 2.

The invariant amplitude for process (a) was already discussed in the previous sec-
tion:

Ma = ie2 [ū(p′2, s2)γµv(p′1, s1)]
1

(p1 + p2)2
[v̄(p1, r1)γµu(p2, r2)] . (25)

The invariant amplitude for process (b) is:

Mb = −ie2 [ū(p′2, s2)γµu(p2, r2)]︸ ︷︷ ︸
lower vertex

1

(p′1 − p1)2︸ ︷︷ ︸
photon propagator

[v̄(p1, r1)γµv(p′1, s1)]︸ ︷︷ ︸
upper vertex

. (26)

10



e+

e−

e+

e−

p1

p2

p′1

p′2

=



e+

e−

e+

e−

p1

p2

γ

p1 + p2

p′1

p′2


(a)

+



e+

e−

e+

e−

p1 p′1

γp′1 − p1

p2 p′2


(b)

Figure 2: Two lowest-order Feynman diagrams for the e+e− → e+e− process.
(a) Annihilation-creation process, discussed previously.

(b) Elastic scattering by photon exchange.

Hence, the unpolarized differential cross-section is now proportional to the quantity

X ≡ 1

4

∑
spins

|Ma +Mb|2

=
1

4

∑
spins

(
|Ma|2 + |Mb|2 +MaM∗

b +M∗
aMb

)
. (27)

Again, we choose to work in the CoM frame so that we have all the identities in
eq. 22 and additionally

|p1| = |p2| = p = |p′1| = |p′2| = p′ ,

and consider the relativistic case so that E � me (i.e. me/E ≈ 0) and p = p′ ≈ E.
Then, we get

Xaa ≡
1

4

∑
spins

|Ma|2

≈ e4

16m4
e

[
1 + cos2 θ

]
, (28)

which follows from the result that we saw in the previous section.
Similar process shows that

Xbb ≡
1

4

∑
spins

|Mb|2

≈ e4

2m4
e(p
′
1 − p1)4

[(p1p
′
1)(p2p

′
2) + (p1p

′
2)(p2p

′
1)]

≈ e4

8m4
e sin4 (θ/2)

[
1 + cos4 θ

2

]
. (29)
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The last term, which is the cross-term between processes (a) and (b), is more
complicated. With higher-power trace theorems, we obtain

Xab ≡
1

4

∑
spins

MaM∗
b

=
−e4

4(p1 + p2)2(p′1 − p1)2

∑
spins

[ū(p′2, s2)γµv(p′1, s1)] [v̄(p1, r1)γµu(p2, r2)]

× [v̄(p′1, s1)γνv(p1, r1)] [ū(p2, r2)γνu(p′2, s2)]

=
−e4

4(p1 + p2)2(p′1 − p1)2

∑
spins

[ū(p′2, s2)γµv(p′1, s1)] [v̄(p′1, s1)γνv(p1, r1)]

× [v̄(p1, r1)γµu(p2, r2)] [ū(p2, r2)γνu(p′2, s2)]

=
−e4

4(p1 + p2)2(p′1 − p1)2
Tr

[
/p′2 +me

2me

γµ
/p′1 −me

2me

γν
/p1
−me

2me

γµ
/p2

+me

2me

γν
]

≈ −e4

64m4
e(p1 + p2)2(p′1 − p1)2

Tr
[
/p
′
2
γµ/p

′
1
γν/p1

γµ/p2
γν
]

=
−e4

8m4
e sin2(θ/2)

cos4 θ

2
. (30)

Therefore, the unpolarized differential cross-section in the highly-relativistic CoM
frame is (

dσ

dΩ

)
CoM

=
1

64π2(E1 + E2)2

|p′1|
|p1|

(2me)
4 [Xaa +Xbb +Xab +X∗ab]

=
α2

8E2

[
1 + cos2 θ

2
+

1 + cos4(θ/2)

sin4(θ/2)
− 2

cos4(θ/2)

sin2(θ/2)

]
. (31)

Note that this quantity diverges to positive infinity as θ → 0 due to the Xbb

contribution. In other words, the differential-cross section is infinite in the co-linear
forward direction. This is because the 4-momentum of the photon exchanged between
the electron and the positron kµ ≡ (p′1 − p1)µ goes to zero and the photon propagator
in eq. 26 diverges.
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