
Julie’s Guide to Double Problems*  
What to do when Physics 113 unveils its most interesting weapon 

- Julie Langenbrunner (Fall 2003) 
 

Disclaimer: This is a discussion of a systematic approach to problem-solving.  It will not always 
work (though when applicable and implemented correctly it will never give a wrong answer), 
and it helps to include other aspects of analysis in your Bag of Problem-Solving Techniques: 
intuition, figures, graphs, and discussion (except at exam time). 

 
It might be best to look through this and look through a provided example at the same time. 
Reference Problems: 
 Ch 2: #78 (police car and speeder) 
 Wks 1: #3 (Prof Manly: egged) 
 Ch 3: #81 (nine-iron on the moon) 
 Wks 2: #3 (football) 
       #6 (physics euphoria - the depth of the well) 
 Ch 4: #23 (standing jump - force analysis) 
 Wks 3: #6 (swinging ball on cable) 
Step 1: Recognize the Double Problem as such. 
 Usually a Double Problem will have 2 situations, each with its own constant 

acceleration (and constant force).  This means you can use equations to model the 
first one, and equations to model the second one.  Often they are the same equations, 
only applying to each situation separately (it is helpful to use subscripts to show 
which situation you are referring to). 

Step 2: Find the connection or connections. 
 There will always be at least one value that is common for both situations.  It might 

be a known, it might be an unknown, but it will always be there.  Usually it helps to 
envision what is going on.  For example, in the case of the speeder and the 
policeman, it helps to envision the police car catching up.  He won't catch up until he 
is at the location of the speeder at the same time the speeder is there.  Therefore, the 
final position of the speeder is the same as the final position of the police car, and the 
time it takes the speeder to get there is the same as the time it takes the police car to 
get there.  

Step 3: List off knowns (givens) and unknowns.  
 Remember that knowns that are not necessarily stated, such as vy = 0 at the top of a 

trajectory.  Also, there are plenty of unknowns we don't care about.  List only those 
unknowns that the problem asks you to find.  

  Note: sometimes a known is not an actual value.  You might be given a 
relationship between two values corresponding to the two situations.  For example, 
in the depth-of-the-well problem, t1 = t2 - 2.5 s., and in the nine-iron-on-the-moon 
problem, vom (initial velocity on the moon) = voE (initial velocity on the earth.)  It is 
helpful to consider such a relationship as a known, while the actual values are 
unknown. 

 
 

                                                 
* Called "Double" to distinguish from multiple-part problems, i.e. problems involving part a, part b, part c, 
etc. 



 
 
 
Step 4: Pick an equation (or equations). 
 Often this is the hardest part.  Your criteria for this equation should be "involves 

some knowns, the connection, and the unknown, and nothing (or little) else."  Often 
there is just one equation (used separately in each situation) that will work.  Some 
harder problems may require you to combine two different equations, but usually 
you can use one.  

 (Remember to treat the x and y components separately!) 
Step 5: Combine and solve. 
 Often, you must combine the equations chosen in step 4 in such a way as to leave 

only your knowns and your unknown.  This can usually be done by substitution.  Do 
this if necessary, and then solve for your unknown. 

 
I included some examples of problems that can be approached this way.  Hopefully they 
will be helpful. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ch. 2 #78 
A police at rest, passed by a speeder traveling at a constant 110 km/h, takes off in hot 
pursuit.  The police officer catches up to the speeder in 700 m, maintaining a constant 
acceleration. 
(a) Qualitatively plot the position versus time graph for both cars from the police car's 
start to the catch-up point. 
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(b) Calculate how long it took the police officer to overtake the speeder. 
Step 1: This is a double problem because we have two situations, each with its own 
constant acceleration. 
 aspeeder = 0 
 apoliceman is constant, but nonzero. 
Step 2: The initial and final positions of the speeder are the same as those of the 
policeman. 

xos = xop = xo      xs = xp = x (this can also be seen from the graph.) 
Also, the time it takes for the speeder to get from xo to x is the same as the time it 
takes for the policeman. 
ts = tp = t 

Step 3:   Knowns   Unknowns
  as = 0    t 
  ap is constant   ap  looking ahead to (c) and (d) 
  xos = xop = xo   vp 

  xs = xp = x = 700 m 
  vos = vs = 110 km/h 

 ts = tp = t 
Step 4:  We want to find t first, and there are a few ways to do this.  We know all we 
need to know about the speeder to find ts, so that will give us tp too.  2-12a will not work, 
(it will yeild 0=0, which we already know) and 2-12c will not work either (it does not 
contain t, our desired value).  We are left with 2-12b:  x = xo + vot + 1/2 at2

 
Step 5: There is no need to combine anything here, so we can skip that part.  Using 
equation 2-12b (with xos = 0 and as = 0), we have 
     xs = vosts 

     ts = 22.9 s 
     t = 22.9 s 



(c) calculate the required police car acceleration 
Step 4: (We need not repeat the other steps.  Although, it should be noted that we can 
now add another value, t = 22.9s, to our list of knowns.)  We want to find ap now, so we 
would like an equation relating that with some of our knowns.  In this case also, we 
know enough about the policeman to calculate his acceleration without considering the 
speeder problem.  We can throw out equation 2-12c, and 2-12a, because they include vp, 
value that we are not yet concerned with.  This leaves us with 2-12b.  x = xo + vot + 1/2 at2 

Step 5:  With xop = 0 and vop = 0, we have 
     xp = 0.5*at2 

     ap = 2.7 m/s2 

(d) calculate the speed of the police car at the overtaking point. 
Step 4: Now we can block out 2-12b, because it does not contain our desired value vp.  
We could use either 2-12a or 2-12c, but 2-12a looks easier.    v = vo + at 
Step 5: With vop = 0, we have 
     vp = apt 
     vp = 61.8 m/s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ch 3: #81 
Apollo astronauts took a "nine iron" to the Moon and hit a golf ball about 180 m.  
Assuming that the swing, launch angle, and so on, were the same as on Earth where the 
same astronaut could hit it only 30 m, estimate the acceleration due to gravity on the 
surface of the Moon. (We neglect air resistance in both cases, but on the Moon there is 
none.) 
 
        Moon         Earth 

θ  

vo vo 

         180 m     
 
 
Step 1: We should recognize this as a double problem 
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Step 2: The connection is stated in the problem.   The l
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 v0m = voE = vo

 θm = θE 

This also means that each component of the initial velo
on the Earth. 
 voxm = voxE = vox 

 voym = voyE = voy 

Step 3:   Knowns   Unknown
 axm = axE = 0   gm 

  ayE = gE     
  at top, vEy = 0 
  at top, vmy = 0 
  xm = 180 m 
  xE = 30 m 
  voxm = voxE = vox 

  voym = voyE = voy 
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Step 5: The best thing to do in a problem like this, after the equation has been chosen, is 
to concentrate on one of the situations at a time, and then try to combine them in the end.  
First, let’s look at our Moon situation. 
Using 2-12c, we have 
    0 =  voy2 + gm 2 (180 m) 
Solving for gm

  (Eq. 1)  gm = - voy2 / (2 * 180 m) 
Now, our Earth situation… 
  (Eq. 2)  0 = voy2 + gE 2 (30 m)   (I have chosen gE = - 9.8 m/s2) 
 
Now to combination.  Notice that we have two equations and two unknowns (gm and 
voy).  Solve Eq. 2 for  voy and substitute that into Eq. 1, and you have your answer! 
    gm = 1/6 * gE = 1.6 m/s2 

 
 



Ch. 4: #23  
An exceptional standing jump would raise a person 0.80 m off the ground.  To do this, 
what force must a 61-kg person exert against the ground?  Assume the person crouches 
a distance of 0.20 m prior to jumping, and thus the upward force has this distance to act 
over before he leaves the ground. 
Step 1: We can recognize this as a Double Problem because this “jumping” actually is a 
two-phase action.  The first phase is where the person is “pushing himself off” the 
ground, which is actually him pushing on the ground and the ground pushing him back.    
The second part is when he is in the air.  He is no longer applying a force to the ground.  
The earth is applying a force to him (gravity), but that is the only force left acting. 
In each phase, there is a constant force acting (therefore constant acceleration).  In the 
first phase, the constant force on the person is a combination of the force applied by the 
ground (normal), and the force applied by the earth (gravity).  In the second phase, the 
only force left is the gravitational force.   
(Extra discussion on jumping: Keep in mind, 
that any time you are standing on the 
ground, you are pushing on the ground and 
the ground is pushing back on you.  To 
actually jump, you must get the ground to 
push you more than it usually does, so the 
way to do this is to push it more than you 
usually do.  Newton’s 2nd law forces the 
ground to push on you more, when you 
push on it more.  That is why people crouch 
down before they jump; otherwise, it is 
quite hard to apply more of a force to the 
ground than you normally do with just 
your weight.) 

(Our jumper is a box because it’s 
easier to put arrows on a box than 
on a stick figure) 

  mg 
 
 
  FN 

Step 2: Finding the connection here is a matter of imagining the situation.  It’s not the 
acceleration, it’s not the time, it’s not the distance, it’s not the starting velocity, it’s not 
the ending velocity, what is it?  In this case, you know that the second phase begins as 
soon as the first phase ends, so the velocity must be the same at the end of #1 and the 
beginning of #2.  Using subscripts 1 for the first phase and 2 for the second phase:  
  v1 = vo2 

Step 2.5: It is a bit confusing where to set the y = 0 point.  If we set it at the ground, then 
the second phase should begin at y2o = 0 because the second phase begins when the 
jumper’s feet are just leaving the ground, but then the first phase occurs below y = 0, or 
below the ground? In this case, it is much more intuitive to speak of simply y1 – yo1 = 0.2 
m, instead of speaking of yo and yo1 separately.  As long as we realize that y1 – yo1 = 0.2 
m is the distance over which the upward acceleration happens, that’s enough to justify 
using that value.  
 
 
 
 
 
 



Step 3:  (no x or y subscripts because this is only in the y direction)  
  Knowns   Unknowns   
  y1 – y01 = 0.2 m  F1

  vo1 = 0        
  m = 61 kg   
  yo2 = 0    
  y2 = 0.8 m 
  a2 = -9.8 m/s2 

  at top, v2 = 0 
Step 4: When deciding how to go about this problem, perhaps your mind should do 
something like this: “Looking at just phase 1, we need the force that this guy needs to 
apply to the ground.  We know F=ma, but we don’t know acceleration.  What’s 
acceleration?  (glancing at equation 2-12a)  We can find acceleration if we know the time, 
how can we find the time?  All of my equations for time involve acceleration, which we 
don’t know…. Ok, so we can’t find time.  How else can we find acceleration?  We can 
find acceleration if we know…. (glancing at equation 2-12c) the initial velocity, the final 
velocity, and the distance.  But we don’t know the final velocity.  How can we find the 
final velocity?  Wait… the final velocity  of phase 1 is my connecting value to phase 2… 
so using phase 2, can we find the final velocity of phase 1 which is the initial velocity of 
phase 2?  Sure!  We can use eq. 2-12c!  (v2 = vo2 + 2a(x - xo)) We know the velocity at the 
top, we know the acceleration, and we know the distance!” 
So our added unknowns that we need to go through before we can find the force that 
the jumper needs to apply to the ground are: 
 -the initial velocity of phase 2 which is the final velocity of phase 1 
 -the acceleration needed in phase 1 to get to the velocity at the end of phase 1 
From here we can find the force necessary to jump. 
Step 5: Using 2-12c for the second phase, we have 
  0 = (vo2)2 + 2g(0.8 m)   I have set g = -9.8 m/s2

  vo = 4.0 m/s 
 Using 2-12c for the first phase, we have 
  (4.0 m/s)2 = 2a1(0.2 m) 
  a1 = 39.2 m/s2 

 Using ∑F = ma 
 FN + mg = ma  (note here that since I have already set g = -9.8 m/s2,  
         mg will come out negative, which is good!) 
The normal force is going to be equal but opposite to the force that the jumper applies to 
the ground, so if we solve for that, we know our answer! 
 FN = ma – mg = m(a – g) 
     = 61 kg ( 39.2 m/s2 – (-9.8 m/s2)) 
     = 2989 N 
This is the force that the ground must apply to the jumper, so this is the force that the 
jumper must apply to the ground, only in the opposite direction. 
 


