Workshop module 3 - Physics 142, Fall 2007

1. A hydrogen atom can be considered as having a central pointlike proton of positive charge +e and an electron of negative charge -e that is distributed about the proton according to the volume charge density $\rho=A \exp \left(-2 r / a_{0}\right)$. Here A is a constant, a_{0} is the Bohr radius equal to $5.3 \times 10^{-9} \mathrm{~m}$ and r is the distance from the center of the atom. (a) find A. (b) Find the electric field produced by the atom at the Bohr radius.
2. A small sphere with a mass of 3.20 g hangs by a thread between two parallel vertical plates 6.00 cm apart. The charge on the sphere is $\mathrm{q}=7 \times 10^{-6} \mathrm{C}$. What potential difference between the plates will cause the thread to assume an angle of 20.0 degrees with the vertical.

3. If the electric field is zero in a region of space, which of the following is always true:
a. the potential is zero
b. the potential is constant
c. the potential is negative
d. the potential depends on the size of the region of space
4. The source of a star's energy is thermonuclear fusion taking place in the core of the star. Estimate the temperature at the center of a star when nuclear fusion reactions begin. (Hints: Fusion is when two protons (or nuclei) bond together due to the strong nuclear force which has an effective range of about $10^{-15} \mathrm{~m}$. Assume fusion takes place if two protons approach each other within $10^{-15} \mathrm{~m}$. Imagine that the protons exist as a gas.)
5. A positive point charge +Q is located at $\mathrm{x}=-\mathrm{a}$.
(a) How much work is required to bring a second equal positive point charge +Q from infinity to $x=+a$?
(b) With the two equal positive point charges at $\mathrm{x}=-\mathrm{a}$ and $\mathrm{x}=+\mathrm{a}$, how much work is required to bring a third charge -Q from infinity to the origin?
(c) How much work is required to move the charge -Q from the origin to the point $\mathrm{x}=2 \mathrm{a}$ along the semicircular path shown in the sketch below?

6. A thin wire segment with charge $+Q$ uniformly distributed along its length, L, is lying on the x-axis with its midpoint at the origin. Calculate the electric potential at a point P on the x axis, where $\mathrm{P}>\mathrm{L} / 2$. From the electric potential, calculate the electric field. Use limiting cases to confirm that the form of the potential and the electric field that you have calculated make sense.
