Physics 142 - September 20, 2005

Electric Potential

Project - show skateboarding video

Last time -
- review of curvilinear coordinates and scale factors that come into integrations
- Gauss' Law, cylindrical example
- Start of Electric potential

\[W = \int_A^B \mathbf{E} \cdot d\mathbf{s} = -\int q_0 \mathbf{E} \cdot d\mathbf{s} = -\int_{B_0}^B E dr \]

\[W = -q_0 \Phi \int_A^B \frac{1}{r^2} dr = kq_0 \frac{1}{r_0} - \frac{1}{r_f} \]
\[
\frac{\text{Work}}{q_0} = \text{Potential difference} \quad \Delta U = V_B - V_A = V_{AB}
\]

\[\Delta \text{in potential energy} \equiv \text{work}\]

\[\text{Potential Diff} \equiv \frac{\Delta \text{PE}}{q_0}\]

"is defined as"

can define "zero" of potential

\[W_{B_0} = 12Q \left[\frac{1}{r_B} - \frac{1}{r_A}\right]\]
define potential to be zero at \(r \to \infty \)

Absolute potential at \(r \)

Potential at \(r \):

\[
V(r) = \frac{kQ}{r}
\]

Important

\[
V_P = \sum_{i} V_i = \sum_{i} \frac{kQ_i}{r_i}
\]
Important

Path Independent

Conservative Force

What is the potential at pt A

\[v = \frac{\int F \cdot ds}{q_0} \]

Arbitrary distribution

\[\Delta Q \]

\[r \]

\[A \]

\[v_A \text{ due to } dQ = dV_A = \frac{k}{r} dQ \]

\[V_A = \int_{vol} \frac{k}{r} \frac{dQ}{vol} \]

Important
\[V = \frac{W}{q_0} \]
\[dv = \frac{dw}{q_0} = -E \cdot ds = -E_s ds \]
\[E_s = -\frac{dv}{ds} \]

Often work in 3d

\[V(x, y, z) \]

to get \(\vec{E} \) we need

\(E_x, E_y, E_z \)

\[E_x = -\frac{dv}{dx}, \quad E_y = \frac{dv}{dy}, \quad E_z = \frac{dv}{dz} \]

\[E_x = -\frac{\partial V}{\partial x} = \text{partial derivative of } V \text{ w.r.t. to } x \]

\[\frac{\partial F}{\partial x} = \frac{dF}{dx} \text{ Hold all other variables constant} \]
\[E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z} \]

\[\vec{E} = -\vec{\nabla}V = -\text{grad}(V) \]

The vector operator \(\vec{\nabla} \) is called "del"

\[\vec{\nabla} \equiv \text{grad} \equiv \text{gradient} \quad \text{3d vector operator} \]

\[= \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \]

If 1D

\[E_x = -\frac{dV(r)}{dr} \]

Often it is easier to calculate the potential than \(\vec{E} \) directly. Then use \(\vec{E} = -\vec{\nabla}V \) to find \(\vec{E} \)
If $r_A = r_B$, then $V_A = V_B$.

Points all at same potential.

Equipotential surface.