Physics 142 - December 1, 2005

Geometric Optics

Dispersion

\[n \text{ depends on } \lambda (\nu) \]

Typically \(n(\text{red}) < n(\text{blue}) \)
\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

\[n_1 \sin \theta_c = n_2 \sin 90^\circ \]

\(\theta_c \) = critical angle

If \(\theta_e > \theta_c \) Total internal reflection
Incident

reflected

refracted

Scattering (electric dipole)
Thin lenses and optical instruments

Physics 142
Fall 2005 – S. Manly

References and photo sources:

http://cvs.anu.edu.au (D. Denning and M. Kirk)
http://www.ebiomedia.com
(a) Converging lenses

Ray 3 passes straight through the center of the lens (assumed very thin).
(b) Diverging lenses

Double concave Planoconcave Concave meniscus
Power of lens measured in diopters

\[P = \frac{1}{f} \quad \text{where } f \text{ is focal length in meters} \]

Power is positive for converging lenses and negative for diverging lenses
Lens equation:

\[\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \]

Magnification:

\[m = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \]
Sign convention is the tricky part, especially in multiple lens systems

Convention from Giancoli p. 841:

- Focal length is + for converging lens and - for diverging lens
- Object distance is + if on the side of the lens from which the light is coming (usual, unless in multi-lens system)
- Image distance is + if on the opposite side of the lens from where the light is coming, if on same side, image distance is –
- Image distance is + for real images and – for virtual images
- Height of image is + if image is upright and – if image is inverted. Height of object is always taken to be +.

Real image: rays actually pass thru image
Virtual image: rays do not actually pass thru image
Aberrations

Spherical aberration

Chromatic aberration
The electromagnetic spectrum
from "The Joy of Visual Perception: A Web Book"
http://www.yorku.ca/cyc/
Types of eyes in the animal kingdom

A. Ocellus

B. Pinhole Eye

C. Compound Eye

D. Lens and Retina (Vertebrate)
Aeschna dragonfly
28,000 facets
A bee’s eye view
Fig. 2.9. Resolution of the eyes of various animals measured physiologically and deduced from anatomical criteria compared to body height: (1) man; (2) peregrine falcon; (3) hen; (4) cat; (5) pigeon; (6) chiffinch; (7) rat; (8) bat (Myotis); (9) frog; (10) lizard; (11) minnow; (12) dragonfly (Aeshna); (13) bee (Apis); (14) Chlorophanus; (15) housefly (Musca); (16) hoverfly (Syrriina), frontal region FO; (17) jumping spider (Methaphidippus), anteromedian eye AM, postero-lateral eye PL; (18) fruit fly, Drosophila. (From Kirschfeld 1976.)
Anableps - minnow
Magnifying glass

In a virtual magnifying glass, the image is virtual and forms at a distance greater than the focal length of the lens. The magnification formula is:

\[m = \frac{\theta'}{\theta} = \frac{N}{f} \]

where:
- \(m \) is the magnification,
- \(\theta' \) is the angle of the image,
- \(\theta \) is the angle of the object,
- \(N \) is the numerical aperture,
- \(f \) is the focal length of the lens.

The diagram illustrates the geometry of how light rays converge at the image point, forming an enlarged virtual image. The focal length \(f \) is typically estimated as 25 cm for a normal eye.
Refracting telescope

Parallel rays from object at ∞ are focused at F_0 by the objective lens. The eye (at I_1) views these rays through the eyepiece lens, which focuses them at F'_e. The image I_2 is observed by the observer.

40 inch refractor – Yerkes Observatory
Reflecting telescope

(a)

Concave mirror (objective)

Eyepiece (lens)

(b)

Eyepiece (mirror)
World's Largest Optical Telescopes

- Herschel 4.2m
- Palomar 5m
- Russian 6m
- Keck I 10m
- VLT 8.2m
- Keck II 10m

Central mirror holes not shown to scale
© W.M. Keck Observatory
Keck Observatory
Hubble Space Telescope
Compound microscope

(a)

(b)
Light vs. depth of field

Shutter speed

\[f\text{-stop} = \frac{f}{D}, \text{ each f-stop} = \text{factor of 2 in light intensity} \]

Faster the object or darker the day, need slower speed and/or larger D

Larger D means narrower depth of field