Trouble-shooting guide

Last time:

\[E = \frac{E_0}{\varepsilon} \]

\(\varepsilon \) = dielectric constant

or can use \(E = \) Permittivity rather than \(E_0 \)

\(E = \varepsilon \varepsilon_0 \)
K, ε are material dependent

Resistance \rightarrow obstacles to particles looking for

Charges flow $i = \frac{d q}{d t}$ in Amperes

1 Ampere = \frac{1 \text{ coul}}{1 \text{ second}}
André Marie Ampère
(1775 - 1836)

French Mathematician
Chemist
Physicist

The inspiration for
Elvis' Collar
\[V = IR \]

Ohm's Law

Resistance measured in Ohms

Ohm = \(\frac{1 \text{ volt}}{\text{Ampere}} \)

1789–1854

Georg Ohm

German
Power spent in resistor \rightarrow heat

\[P = iV \]

\[v = iR \]

\[P = i^2R \]

\[i = \frac{v}{R} \]

Use the one that works.
\[V = V_1 + V_2 + V_3 = iR_1 + iR_2 + iR_3 = i(R_1 + R_2 + R_3) \]

\[= iR \]

\[R = R_1 + R_2 + R_3 = \sum R_i \]
\[V = IR \quad V = i_1 R_1 \quad V = i_2 R_2 \]

\[I = i_1 + i_2 \]

\[\frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2} \]

\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \]

\[\frac{1}{R} = \frac{1}{\Delta} \cdot \frac{1}{R_1} \]
Battery \rightarrow V constant

one direction

Direct Current \rightarrow DC

Alternating Current \rightarrow AC

\[i_v = i_2 + i_3 \]
Kirchhoff's Rules:

1. \(\Sigma V = 0 \) around closed loop in circuit

2. \(\Sigma i = 0 \) at any junction

Current is conserved at any branch point

Use rules and independent loops and conventions

To get \(N \) eqns

\(\rightarrow \) solve for \(N \) unknowns
Solve a problem → convention

Choose currents in each branch of circuit (arbitrary)

Imaginary loops about circuit

Sum ΔV as go around each independent imaginary loop

$\Delta V - \text{if} \rightarrow \text{loop}$

$\Delta V + \text{if} \rightarrow \text{loop}$
$E + i f \quad \text{loop}$

$E - i f \quad \text{loop}$

Each indep loop $\Delta V = 0$

$\rightarrow N$ eqns

Solve N unk
\[\sum V = 0 \text{ around each loop} \]

A \[\sum V = -i_1 R - \varepsilon_1 + i_2 R_2 + \varepsilon_2 = 0 \]

B \[\sum V = -\varepsilon_3 + i_3 R_3 + i_2 R_2 = 0 \]

gives 3 eqns \rightarrow can solve for up to 3 unknowns