Physics 114 - March 28, 2006

Project info on web

Last Time:

\[\infty \text{ current sheet with linear uniform current density } j \]

\[\text{Amperian loop} \]

Use Ampere's Law + Symmetry to get

\[|B| = \frac{M_0 j}{2} \]

\[B \text{ uniform} + \infty \]
\[\vec{B} \text{ field} \]

Infinite Solenoid

\[B = 0 \]

\[B = \mu_0 n \text{ uniform} \]

\[n = \text{Turns/length} \]
Seduce \ vs. \ Induce

Magnetic Induction
1830’s
Michael Faraday
Joseph Henry

Induction: A changing magnetic field induces an EMF
(a changing electric field)
No changing fields

Magnetostatics

Kirchoff

\[\sum V \mid \text{closed loop} = 0 \]

\[E \sim - \frac{dv}{dx} \]

\[E \cdot dl \sim v \]

\[\oint E \cdot dl = 0 \]

Kirchoff in free space

Changing fields

Faraday's law

\[\mathcal{E} = \oint \mathbf{E} \cdot d\mathbf{l} = - \frac{d\Phi_m}{dt} \]

\[\Phi_m = \int \mathbf{B} \cdot d\mathbf{A} \]

True in wires and materials

Free space
Lenz's law - The induced current opposes the change that produced it.

\[\varepsilon = -\frac{d\Phi_m}{dt} = -\frac{d(Blx)}{dt} = -Bldx = -Blv \]

\[i = \frac{\varepsilon}{R} = \frac{Blv}{R} \]
Time Φ increasing
\[\phi_m = BA \]

\[\phi_m = (\mu_0 n i) A \]

\[\phi_m \propto i \]

\[\text{prop. constant depends on geometry} \]

\[\text{length } l \text{ of solenoid} \]

\[\text{# loops } = n \times l \]
\[\Phi_m = (\mu_0 n i A) n l \]

length: \[= [\mu_0 n^2 A l] i \]

geometry

\[\Phi_m = L i \]

\[\Delta i \rightarrow \frac{di}{dt} \rightarrow \frac{d\Phi_m}{dt} \rightarrow \mathcal{E} \]
\[E = -d \Phi_m \quad \Rightarrow \quad -L \frac{di}{dt} \]

\[\Delta i \text{ in } \textcircled{1} \]
\[\Delta B \text{ in } \textcircled{2} \]
\[\text{induces } E \text{ in } \textcircled{2} \]

\[\Phi_2 \propto i_1 \]
\[\Phi_2 = L_i \text{ in } \textcircled{2} \]
\[= \text{ const of Mutual inductance} \]