Nerve Impulse Conduction and Electrocardiograms

Physics 114, Spring 2006 - S. Manly
University of Rochester

Reference and source of photos:
Nerve cells (neurons) receive “electric signals” through dendrites and pass the signal on through the axon.
Semipermeable membrane: at rest, K+ and Cl- can cross, Na+ cannot.

Diffusion of K+ and Cl- creates a charge separation (and a potential difference) across the membrane, until it is shut off by the Coulomb force.

Electrically neutral, but different, fluids.

70-90 mV difference, 8 nm wall means E is huge!
A stimulus causes the cell membrane to become permeable to Na⁺ momentarily. Some Na⁺ rushes in and causes depolarization, which in turn, shuts off the permeability to Na⁺. Then repolarization occurs.

Voltage pulse called the action potential
The changing voltage and electric fields provide the stimulus to adjacent cell walls

The pulse travels about 1 m/s along the cell wall
Myelinated axons transmit the nerve impulse faster, acting like a conductor between gaps where the voltage impulse is regenerated.
A depolarization wave can move across muscle cells, and does in the heart. You can detect the changes in potential caused by this depolarization wave by using conductors placed on the body. This is called an electrocardiogram.