Mass Spectrometer

\[F = qVB \]

\[F = m \frac{V^2}{R} \] (mass in circle)

\[qVB = m \frac{V^2}{R^2} \]

\[m = \frac{qRB}{V} \]

Intensity

- Sample: \(\text{C}_2\text{H}_6 \)
- \(\text{C}_3\text{H}_5 \)
- \(\text{C}_4\text{H}_9 \)
- \(\text{C}_2\text{H}_3 \)

Relative Intensity

- \(\frac{M}{2} \)
- \(\frac{57}{100} \)
- \(\frac{41}{41.5} \)
- \(\frac{29}{38.5} \)
- \(\frac{27}{15.7} \)
Must Relate velocity at opening to Mass Spectrometer to the Potential Diff V

\[KE = \frac{1}{2} m V^2 \]

\[V = \left(\frac{2q\nu}{m} \right)^{\frac{1}{2}} \]

\[m = \frac{qRB}{2V} \]

or

\[m^2 = \frac{q^2 R^2 B^2}{2V} \frac{1}{m^2} \]

Now

\[R = \frac{1}{2} x \]

\[m = \frac{q^2 R^2 B^2 x^2}{8V} \]

What is \(\ddot{a} \) of bar?

\[\ddot{F} = L \ddot{i} \times \bar{B} = L i \bar{B} \hat{x} \]

\[m \ddot{a} = L i \bar{B} \hat{x} \]

\[\ddot{a} = \frac{L i \bar{B}}{m} \hat{x} \]

\[\ddot{a} \rightarrow \text{constant} \]

\[\text{can use constant acceleration} \]

For current = 1 Amp

\[B = 3 \text{ Tesla} \]

\[L = 2 \text{ Meters} \]

\[m = 3 \text{ kg} \]

\[\ddot{a} = \frac{(2 \text{ m})(1 \text{ A})(3 \text{ T})}{3 \text{ kg}} = 1.2 \text{ m/s}^2 \hat{x} \]

\[\text{After 10 seconds} \]

\[V_x = V_{0x} + \ddot{a}_x t = 0 + (1.2)(10) \]

\[V = 2 \text{ m/s} \]
Up to Now → Effect of B field on Moving charged particle

What about field produced by moving charges

Production of Magnetic Fields by Charges and Currents

Electrostatics

$$E = qE + \text{Coulomb's law}$$

$$\vec{E} = \frac{kQ}{r^2}$$
due to Q

Magnetostatics

Biot-Savart law

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{Q \vec{v} \times \hat{r}}{r^2}$$

due to Q

μ_0 = constant = Permeability of free space

$$\mu = 4\pi \times 10^{-7} \frac{T \cdot m}{A}$$

Distribution (currents, not charges)

$$\int \vec{B} \, d\vec{l} = \frac{\mu_0}{4\pi} \frac{i \vec{d}x \times \hat{r}}{r^2}$$

$$d\vec{B}(r) = \frac{\mu_0}{4\pi} \frac{i \vec{d}l \times (r - r')}{|r - r'|^2}$$
Example - calculate the B field at the center of a current loop.

\[\mathbf{i} \times \hat{z} = \mathbf{i} \times \mathbf{B} = \mathbf{B} \]

\[\mathbf{d} \mathbf{B} = \frac{\mu_0}{4\pi} \frac{i \mathbf{dl} \times \hat{z}}{r^2} = \frac{\mu_0}{4\pi} \frac{2\pi r}{r^2} \mathbf{i} = \frac{\mu_0 i}{2\pi} \hat{r} \]

\[\mathbf{B} (0, 0, 0) = \frac{\mu_0 i}{4\pi} \int_0^{2\pi} \frac{\mathbf{i} \mathbf{dl}}{r^2} = \frac{\mu_0 i}{4\pi} \frac{2\pi}{r} \left(\frac{2\pi}{r} \right) \]

Electrostatics

Ampere's Law

\[\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\varepsilon_0} \quad \text{(Surface integral)} \]

Magnetostatics

\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enclosed}} \quad \text{(Closed curve)} \]

Curl

\[\mathbf{E} = \hat{z} \times \mathbf{B} \]

Div

\[\nabla \cdot \mathbf{B} = 0 \]