Dielectrics - insulator - charges do not flow freely

Force between plates (E-field)
increased due to induced charges

dipoles line up ... get induced surface charge
Again E at plates increased slightly
(less than if had placed conductor)

But inside dielectric

E is reduced

So, can reduce E
between plates by filling with dielectric

So $|E'| = \frac{V}{K E_0}$

Reduced by K = dielectric constant $K > 1$

Water $K = 80.4$
Air $K = 1.00054$
Vacuum $K \equiv 1$
Oil $K = 4.5$
Fields are affected by medium
effect is medium-dependent

\[E = \frac{J}{\varepsilon_0} \]
\[dV = -E \cdot dS \]
\[|\Delta V| = V_{\text{between plates}} = \frac{V \cdot d}{\varepsilon_0} = \frac{Q}{A \varepsilon_0} \]

Earlier, we had no dielectric

\[Q = CV \quad C \text{ was } \frac{\varepsilon_0 A}{d} \]

Now

\[C = \frac{\varepsilon_0 A}{d} \]

 capacitor is increased!

For a pt charge imbedded in dielectric

\[E \to \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \]

This is all I will say.

Critical importance to biology + chemistry

This is something you must deal w/ in real-world
real solutions, real gasses, real cells, real exps.

This is the source of all sorts of optical effects!
Current and Circuits

Use \(v \) in place of \(\Delta v \), conventional way to simplify notation.

\[E \] for uniform wire

\[E = \frac{V}{L} \]

Charge flows

(Actually electrons, but convention is \(\uparrow \))

Direction of \(+ \) charge flows is \(+ \)

\(+ \)

\(\times \) section of wire

\[\frac{dq}{dt} = \text{current } i \]

\(i \) is \(+ \) in direction of \(+ \) charge flow

If \(\text{no other source} \)

If little conductor section is isolated then charge flows until field due to induced charges cancels initial imposed field.

If \(\text{not isolated but part of a circuit} \) -- charge goes around and around.

\[\text{Current units: } 1 \text{ Ampere} = \frac{1 \text{ coulomb}}{1 \text{ second}} \]
Charge is not continuously accelerated

\[\text{get a steady state equilibrium between } i \text{ and lattice atoms} \]

Little collisions w/ atoms in the conductor lattice
Transfer energy from charges to the lattice
Moving (vibration + heat)

For given material get certain \(i \) for given \(V \)

\[V = iR \]

\[1 \text{ Volt} = 1 \text{ Ampere} \]

\(R \) is resistance

Math: All materials have resistance except something called a "superconductor"

Except when explicitly said in problem - assume
Metal Conductors - Wires to have high/low resistance

\[\text{Symbol for resistor} \]

\[\text{Circuit Diagram} \]

\[\text{wire w/ no resistance} \]
\[\Delta V = V = iR \]

\(V \) is said to be the "potential drop across the resistor."

Useful analogy for circuits:

\[
\text{pipe width} \quad \text{or} \quad \text{slats to slow flow}
\]

\[\frac{W}{q} = V \text{ across resistor} \]

\[W = qV \]

\[\frac{dW}{dt} = \frac{dq}{dt} V \Rightarrow P = iV \]

Power = (Current \times Voltage)

\(P = \text{power dissipated across resistor} \)

Also, \(V = iR \)

\[P = i^2 R \]
Combinations of Resistors

\[
\begin{align*}
V_1 &= iR_1 \\
V_2 &= iR_2 \\
V_3 &= iR_3
\end{align*}
\implies i
\]

\[
V = V_1 + V_2 + V_3 = i(R_1 + R_2 + R_3)
\]

Resistors in series: \(R = R_1 + R_2 + R_3 \)

![Resistor diagram]

\[
i = i_1 + i_2
\]

\[
\begin{align*}
V &= iR \\
V &= V_1 = i_1R_1 \\
V &= V_2 = i_2R_2
\end{align*}
\]

\[
\frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2}
\]

\[
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}
\]

Resistors in Parallel

Batteries and EMF

Batteries + Generators: able to maintain

\(\equiv \) Seats of electromagnetic force

![Battery diagram]