Physics 113-November 7, 2006
Cast
悩场

$$
\bar{L}=\frac{T}{\uparrow} \alpha^{\text {Angular }} \text { Accelestaino }
$$

Torque moment of inertia
This is the rotational analogue of $F=$ ma Vector Aspect of egn very impt. but ignored 'till Now.
$\tau \equiv$ torque $\sim r F^{\cdots} \ldots$ more complicationtocome C Applied force is of rotAtion prompt. of applies force

I ミ moment of Inertia

$$
I=\int_{\text {volume }} r^{2} d m=\int_{\text {volume }} r^{2} \rho d v
$$

Many I are already calculated for you com look up in a table

Hollow sphere
$I=2 / 3 M R^{2}$
hel
Hoof fur does cyl.
rand rand clime Solid
slipping

$E_{\text {START }}$
$I=M R^{2}$

Solid Sphere
$I=\frac{2}{5} M R^{2}$

$$
\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}=m g h
$$

$$
I_{A}=\frac{1}{2} M R^{2} \quad \text { (from table) }
$$

$$
I_{B}=I_{A}+M r^{2} \quad \text { Parallel axis theol }
$$

Axes I/

$$
\begin{aligned}
& I_{B}=I_{A}+M R^{2} \\
& I_{B}=3 / 2 M R^{2}
\end{aligned}
$$

Cotatim abt C.M.

$$
K E=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \frac{v^{2}}{R^{2}}
$$

Moving C.M $K E=\frac{1}{2} M V^{2}$
2)

$$
R E_{\text {TOT }}=\frac{1}{2} m v^{2}+\frac{1}{4} m v^{2}=\frac{3}{4} m v^{2}
$$

Rotation AbT
Translation of
supeuposition
2) BoDy rotating abt Axis at bottom $C . M$. NOT moving

$$
\begin{aligned}
& K E_{\text {TOT }}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{3}{2} M R^{2}\right) \omega_{\uparrow}^{2} \\
& K E_{\text {TOT }}=\frac{3}{4} M v^{2} \quad \frac{v^{2}}{R^{2}} \\
& \frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}=M g h \\
& \frac{3}{4} \not h v^{2}=\text { ohg } \\
& h=\frac{3}{4} \frac{v^{2}}{g}
\end{aligned}
$$

$$
\begin{aligned}
& M_{1}=35.0 \mathrm{~kg} \\
& M_{2}=38.0 \mathrm{~kg}
\end{aligned}
$$

Pulley: uniform cylinder or radius $R_{0}=0.3 \mathrm{~m}$ and Mass $M=4.8 / \mathrm{gg}$

Init M_{1} ongromd M_{L} at rest $2.5 M$ above grad Assume rope massless and does not Slip

System released \rightarrow what'is speed of M_{2} just before it hots the ground?

Two ways to solve this problem \square

Energy Conservation

$$
\begin{aligned}
& E_{\text {START }}=E_{\text {end }} \\
& m_{2} g h=m_{1} g h+\frac{1}{2} M_{1} v_{1}^{2}+\frac{1}{2} M_{2} v_{2}^{2}+\frac{1}{2} I \omega^{2} \\
& v_{1}=v_{2}=v=R_{0} \omega \\
& I=\frac{1}{2} M R_{0}^{2} \\
& M_{2} g h=M 1 g h+\frac{1}{2}\left(M_{1}+M_{2}\right) v^{2}+\frac{1}{2}\left(\frac{1}{2} M R_{0}^{2}\right) \frac{v^{2}}{R_{0}^{2}}
\end{aligned}
$$

Solve for v

$$
v= \pm \sqrt{\frac{\left(M_{1}-M_{2}\right) g h}{\frac{m_{1}^{4}}{4}+\frac{M_{2}}{2}+\frac{M_{1}}{2}}}= \pm 1.4 \mathrm{~m} / \mathrm{s}
$$

useng NQotor's lavs

With massine pulley

$$
T \neq T^{\prime}
$$

n.

$$
\begin{gathered}
\sum F_{y}=M_{1} a \\
M_{1} a=T-M_{1} g \\
\uparrow
\end{gathered}
$$

3 eyes 3 unknowns

$$
\begin{aligned}
& a=\frac{\left(m_{2}-m_{1}\right) g}{\frac{1}{2} m+m_{1}+m_{2}} \\
& \zeta a=0.4 \mathrm{~m} / \mathrm{s}^{2} \\
& v_{2}^{2}=y_{02}^{27}+2 \mathrm{ah} \\
& v_{2}^{2}=(2)(.4)(2.5)=2 \quad \text { cons } \quad v_{2}=1.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Both methods give the same Answer.

