Bernoulli's eqn example

\[P_1 + \frac{1}{2} \rho v_1^2 + \rho gh = P_2 + \frac{1}{2} \rho v_2^2 \]

\[P_1 - P_2 = \rho_{atm} \]

\[h = y_1 - y_2 \]

\[v_1 \approx 0 \]

\[\rho gh = \frac{1}{2} \rho v_2^2 \]

\[v_2 = \sqrt{2gh} \]

\[y_3 = y_2 + \frac{v_{oy} t}{2} + \frac{1}{2} a t^2 \]

\[d = v_2 t \]

Standard Projectile Problem to find \(d \)
Simple Harmonic Motion (SHM)

\[F = -k(x-x_0) \]

- Goes back and forth
- Energy flow:
 \[KE \rightarrow PE \rightarrow KE \]
 \[\frac{1}{2}mv^2 \rightarrow \frac{1}{2}k(x-x_0)^2 \]
\[F = -kx \quad x_0 = 0 \]

\[ma = -kx \]

\[m \frac{d^2x}{dt^2} = -kx \]

\[\frac{d^3x}{dt^2} + \frac{k}{m} x = 0 \]

differential equation

equation of Motion for a Simple Harmonic Oscillator

\(\Rightarrow \) Solve this for \(x(t) \) \(\Rightarrow \) tells where spring is

\(\Rightarrow \) at a fun of time

This is what you need usually

Let \[x = A \cos(\omega t + \phi) \]

\(\uparrow \quad \downarrow \quad \) initial phase

\[\text{Amplitude} \quad \text{Frequency} \]

\[\frac{dx}{dt} = -A \omega \sin(\omega t + \phi) \]

\[\frac{d^2x}{dt^2} = -A \omega^2 \cos(\omega t + \phi) \]

Substitute into differential eqn

\[-A \omega^2 \cos(\omega t + \phi) + \frac{k}{m} A \cos(\omega t + \phi) = 0 \]

True if \(\omega^2 = \frac{k}{m} \) \(\Rightarrow \omega = \pm \sqrt{\frac{k}{m}} \)

\[\Rightarrow \text{general soln} \quad \text{constants set by "initial" and "boundary" conditions specific to problem} \]
Let \(x = A \sin(\omega t + \phi) \)
\[
\frac{dx}{dt} = A \omega \cos(\omega t + \phi)
\]
\[
\frac{d^2x}{dt^2} = -A \omega^2 \sin(\omega t + \phi)
\]
substitute into differential eqn —
\[-A \omega^2 \sin(\omega t + \phi) + \frac{k}{m} A \sin(\omega t + \phi) = 0\]
True if \(\omega^2 = \frac{k}{m} \)!
So our little differential eqn has solns either \(x(t) = A \cos(\omega t + \phi) \) or \(x(t) = A \sin(\omega t + \phi) \)

Does it make sense?

Harmonic Functions

Why we call it Simple Harmonic Motion!

Let mass on spring oscillate on frictionless horizontal plane
View from above

Pen ➔

The motion is periodic. It repeats in time T, called the period.

Frequency $\hbar = \frac{1}{T}$ units of $\frac{1}{5}$ or Hertz, Hz.

$x(t) = A \cos(\omega t + \phi)$ initial phase angle

Amplitude of motion

$\omega = \frac{2\pi}{T}$ in radians.

$A \begin{array}{c}
\phi = 0 \\
\end{array}$

$x(t) = A \cos(\omega t + \phi)$

Curve: if $\phi = \pi$

Circular motion can be thought of as a superposition of linear SHM in 2 dimensions.

$A \cos \theta = y$

$A \sin \theta = x$

but $\theta = \omega t$

$X(t) = A \sin \omega t$

$Y(t) = A \cos \omega t$

if $\theta = \theta_0$... put in initial phase angle into argument.
Taylor's series expansion about $x = a$

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \frac{f'''(a)(x-a)^3}{3!} + \cdots + \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} + \cdots$$

Look at:

$$f(x) = \sin \theta \quad \text{about} \quad \theta = 0$$

$$\sin \theta = \sin(0) + \cos(0)(\theta-0) + \frac{-\sin(0)}{2!}(\theta-0)^2 + \frac{-\cos(0)}{3!}(\theta-0)^3 + \ldots$$

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \ldots$$

For small θ

$$\sin \theta \approx \theta \quad \theta \ll 1$$

<table>
<thead>
<tr>
<th>θ</th>
<th>θ_{\sin}</th>
<th>$\frac{\theta_{\sin}}{\sin \theta}$</th>
<th>$\frac{\theta}{\sin \theta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.017453</td>
<td>0.017452</td>
<td>0.006%</td>
</tr>
<tr>
<td>10</td>
<td>0.1745</td>
<td>0.1736</td>
<td>0.51%</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>4.7%</td>
</tr>
</tbody>
</table>
Taylor series expansion of \(\cos x \)

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots
\]

\(\cos x \approx 1 \) for \(x \) small

This is a very useful tool in physics!!

back to simple pendulum

\[
\begin{align*}
\theta & = \theta_0 \\
\frac{d^2\theta}{dt^2} & = -\frac{mg}{L} \sin \theta \\
& \approx -mg \theta = -mg \frac{\theta}{L}
\end{align*}
\]

\[
\frac{d^2\theta}{dt^2} + \frac{g}{L} \theta = 0
\]

\(\theta(t) = A \cos(\omega t + \phi) \) where

\[
\omega = \sqrt{\frac{g}{L}}
\]
Tells us spring mass oscillator w/ SHM about y_0

$F = -k y'$

where $y' = y - \frac{mg}{k}$

$y'(t) = A \cos(\omega t + \theta_0)$

$\omega = \sqrt{\frac{k}{m}}$

Gravity shifts the equilibrium point of motion from $y = 0$ to $y' = 0$

All other results are the same w/ for SHM in variable y'

Example: Simple Pendulum

Restoring force $F = mg \sin \theta$

But $\sin \theta \approx \theta$ for small θ

What? Where did I get this magic?!
AT maximum amplitude ... know all E is PE

\[E = \frac{1}{2} kx^2 = \frac{1}{2} kA^2 \]

Total Energy in a SHO is \(\frac{1}{2} kA^2 \)

Example

Show a mass oscillating on a vertical spring executed simple harmonic motion.

\[y = y_0 - \frac{mg}{k} \]

\[\Sigma F = 0 \Rightarrow k(y_0 - \frac{mg}{k}) - mg = ma = \frac{md^2y}{dt^2} \]

\[\Sigma F_y = -ky + mg = ma = \frac{md^2y}{dt^2} \]

Let \(y \rightarrow y' + \frac{mg}{k} \)

\[\frac{dy}{dt} = \frac{dy'}{dt} \quad \text{and} \quad \frac{d^2y}{dt^2} = \frac{d^2y'}{dt^2} \]

\(\Sigma F_y \) becomes \(-ky' = \frac{md^2y'}{dt^2} \)

This is eqn of motion for SHO we know how to solve!