Physics 100-Sept. 17, 2007

Recitations begin this week probably useful to bring calculator

Last Time \qquad play Nestor
\rightarrow Play sorn g
Force \longrightarrow Think $F=m a$
Forces of Nature later
gravitation (Newton)
$i_{r}^{M_{1}} \quad F=\frac{G M_{1} m_{2}}{r^{2}}$
Electromagnetism
Coulomb's Law

$$
\dot{y}_{0}^{q_{1}} \quad \quad F=\frac{k_{2} q_{1} q_{2}}{r^{2}}
$$

What is the "Essence" of the force?? who knous... Let's play Pretend
gravitational field
At each point in space gravitational $\frac{\text { Force }}{\text { mass }}$
(Magnitucle + direction)
That would be felt by a little test mass at that Point

Electric field
At each point in space Electric Fores (Magnitucle + direction)
That would be felt by a little + test charge at that Point

Think of "Temperature field" or "wind field"

The Essence of Special Relativity

Steve Manly
Department of Physics and Astronomy
University of Rochester

Velocities add!!

It's common sense!

Speed with respect to you is $4 \mathrm{mi} / \mathrm{hr}$

Speed with respect to you is $2+4=6 \mathrm{mi} / \mathrm{hr}$

The speed of light is greater for beam I, beam II or beam III?

Weird, huh? What does it mean for the real world?

Enter our man Einstein!

Einstein thought experiment:
Consider a beam of light that is emitted from the floor of a train that bounces off a mirror on the ceiling and returns to the point on the floor where it was emitted.

Fact: Light is emitted and detected at point A.
This fact must be true no matter who makes the measurement!!!!

Sam is on the train

Velocity of light $=\mathrm{c}$
$\mathrm{c}=$ distance/time
$\mathrm{c}=2 \mathrm{H} / \mathrm{T}_{\mathrm{sam}}$
$\mathrm{T}_{\text {sam }}=2 \mathrm{H} / \mathrm{c}$

Sally watches the train pass and makes the same measurement.

Light is emitted

Sally is standing still, so it takes two clocks.

Light is emitted
Light returns

Sam

Sally

Sally sees the light traveling further. If light travels at a constant speed, the same "event" must seem to take longer to Sally than Sam!

Time is relative ... not absolute!!

From Sally's point of view

From Sally's point of view

Sam (on train)

Sally (on ground)

$$
\begin{aligned}
& 2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c} \\
& \left.\frac{2 H}{T_{\text {sam }}}=\frac{2}{T_{\text {sally }}} \sqrt{T_{\text {sally }}} \sqrt{H^{2}+\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}} \mathrm{v}=2 \mathrm{v} / \mathrm{T}_{\text {sally }}\right)^{2} \\
& \left(\frac{2 H}{T_{\text {sam }}}\right)^{2}=\left(\frac{2 H}{T_{\text {sally }}}\right)^{2}+\left(\frac{2}{T_{\text {sally }}}\right)^{2}\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{2 H}{T_{\text {sam }}}\right)^{2}=\left(\frac{2 H}{T_{\text {sally }}}\right)^{2}+\mathrm{v}^{2} \\
& \left(\frac{1}{T_{\text {sam }}}\right)^{2}=\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{(2 H)^{2}}
\end{aligned}
$$

Recall $2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c}$ or $2 \mathrm{H}=\mathrm{cT}_{\text {sam }}$

$$
\begin{array}{r}
\left(\frac{1}{T_{\text {sam }}}\right)^{2}=\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{\left(c T_{\text {sam }}\right)^{2}} \\
\left.c^{2}=\frac{c^{2} T_{\text {sam }}^{2}}{T_{\text {sally }}^{2}}+\mathrm{v}^{2} \rightarrow T_{\text {sally }}=\left[\frac{1}{\sqrt{1-\left(\frac{\mathrm{v}}{c}\right)^{2}}}\right] T_{\text {sam }}\right]
\end{array}
$$

Sam (on train)
Sally (on ground)

Think about it!
Sam and Sally measure the time interval for the same event.
The ONLY difference between Sam and Sally is that one is moving with respect to the other.

$$
\text { Yet, } \mathrm{T}_{\text {sally }}>\mathrm{T}_{\text {sam }}
$$

The same event takes a different amount of time depending on your "reference frame"!!

Time is not absolute! It is relative!

Can this be true??

Experiment says YES!

Can this be true??

Experiment says YES!

Less time elapsed on the clocks carried on the airplane

$$
V=0.98 c
$$

Lifetime =70 years on spaceship

$$
\begin{aligned}
& t_{\text {earth }}=\frac{1}{\sqrt{1-\left(\frac{98 c c}{c}\right)^{2}}} \text { (70 years) } \\
& t_{\text {earth }}=(5)(70 \text { years })
\end{aligned}
$$

$$
()^{\text {Ear }}
$$

How long does person appear to live to astronomers on earth?

Measure the length of a boxcar where you are on the car.

Measure the length of a boxcar moving by you.

Length is relative, too!

$$
\mathrm{V}=0
$$

