Physics 100 - January 22, 2007

Last Time -
Course introduction
If you missed $1 \frac{\text { ST }}{}$ class see website http://web.pas.rochester.edu/~manly/class/P100_2007/
Get syllabus, notes from IST lecture
If Not getting class emails, let me knoll
Sign up for recitation Section

Also last time -
Human experience only a tiny fraction of time/length/Mass socles in This universe.

* magnet lab powers of ten Java Applet Why should nature conform to human bias?

What is Science?
How does science differ from other human Endevours that seek to makesense of the world around us?
 before Experiment.

How does the Mission of Science, combined with the constraint above, dictate the nature of Science?
Science helps us understand and bring order to The world around US.

People must convey enough detail about a scientific observation to others that the others can attempt to reproduce the experimart/observation
detail ... units, techniques
Conditions of measurement
Makes scientific writing ven g dhy/detail oriented as compared to other forms of writing Hand to read unless you are expert

Also all observations incomplete unless provided with measure/estimate of how good is the observation \rightarrow observation plus error estimate

Speed with respect to you is $4 \mathrm{mi} / \mathrm{hr}$

Speed with respect to you is $2+4=6 \mathrm{mi} / \mathrm{hr}$

The speed of light is greater for beam I, beam II or beam III?

waves

Photo credit: Andrew Davidhazy

Michelson-Morley experiment

1881 - A.A. Michelson in Berlin
1887 - A.A. Michelson and E.W. Morley in US (Case Western)

Weird, huh? What does it mean for the real world?

Enter our man Einstein!

Instead of trying to "save the current paradigm", Einstein bowed before the experiment.

What if it is true??

Two postulates:

1) Michelson-Morley is correct. Speed of light is the same in all inertial reference frames
2) Physics is the same in all inet tial reference frames

Point of view of observer
Moving at constant speed

Einstein thought experiment:
Consider a beam of light that is emitted from the floor of a train that bounces off a mirror on the ceiling and returns to the point on the floor where it was emitted.

Fact: Light is emitted and detected at point A.
This fact must be true no matter who makes the measurement!!!!

Sam is on the train

Velocity of light $=c$ c = distance/time
$\mathrm{c}=2 \mathrm{H} / \mathrm{T}_{\text {sam }}$
$\mathrm{T}_{\text {sam }}=2 \mathrm{H} / \mathrm{c}$

Sally watches the train pass and makes the same measurement.

Light is emitted

Sally is standing still, so it takes two clocks.

Do train cart demo

Sam

Sally

Sally sees the light traveling further. If light travels at a constant speed, the same "event" must seem to take longer to Sally than Sam!

Time is relative ... not absolute!!

From Sally's point of view

From Sally's point of view

$$
\begin{gathered}
\mathrm{c}=\text { distance/time }=2 \mathrm{D} / \mathrm{T}_{\text {sally }} \\
\mathrm{T}_{\text {sally }}=2 \mathrm{D} / \mathrm{c}
\end{gathered}
$$

Sally (on ground)

$$
\begin{aligned}
& 2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c} \\
& \frac{2 H}{T_{\text {sam }}}=\frac{2}{T_{\text {sally }}} \sqrt{H^{2}+\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}} \sqrt{H^{2}+\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}} \\
& \left(\frac{2 H}{T_{\text {sam }}}\right)^{2}=\left(\frac{2 H}{T_{\text {sally }}}\right)^{2}+\left(\frac{2}{T_{\text {sally }}}\right)^{2}\left(\frac{1}{2} \mathrm{v} T_{\text {sally }}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{2 H}{T_{\text {sam }}}\right)^{2}=\left(\frac{2 H}{T_{\text {sally }}}\right)^{2}+\mathrm{v}^{2} \\
& \left(\frac{1}{T_{\text {sam }}}\right)^{2}=\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{(2 H)^{2}}
\end{aligned}
$$

Recall $2 \mathrm{H} / \mathrm{T}_{\text {sam }}=\mathrm{c}$ or $2 \mathrm{H}=\mathrm{cT}_{\text {sam }}$

$$
\begin{aligned}
\left(\frac{1}{T_{\text {sam }}}\right)^{2} & =\left(\frac{1}{T_{\text {sally }}}\right)^{2}+\frac{\mathrm{v}^{2}}{\left(c T_{\text {sam }}\right)^{2}} \\
c^{2} & \left.=\frac{c^{2} T_{\text {sam }}^{2}}{T_{\text {sally }}^{2}}+\mathrm{v}^{2} \rightarrow T_{\text {sally }}=\left[\frac{1}{\sqrt{1-\left(\frac{\mathrm{v}}{c}\right)^{2}}}\right] T_{\text {sam }}\right]
\end{aligned}
$$

Sally (on ground)

Think about it!
Sam and Sally measure the time interval for the same event.
The ONLY difference between Sam and Sally is that one is moving with respect to the other.

$$
\text { Yet, } \mathrm{T}_{\text {sally }}>\mathrm{T}_{\text {sam }}
$$

The same event takes a different amount of time depending on your "reference frame"!!

Time is not absolute! It is relative!

$$
{ }^{\frac{k}{2}} \longrightarrow V=0.98 \mathrm{C}
$$

Let human on spaceship live 70 yeans as measured by clocks on space ship human on spaceship lives normal biological lite

$$
\begin{aligned}
& \Delta t^{\prime}=\gamma \Delta t \quad \begin{array}{c}
\text { relation of times }(\Delta t) \\
\text { as measured in two } \\
\text { frames of referen }
\end{array} \\
& \gamma>1 \\
& \gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{1}{\sqrt{1-\left(\frac{98 c}{c}\right)^{2}}}=2.3
\end{aligned}
$$

frames of reference

How do I know which frame is "primed"?
Trick to remember:
We are discussing relativistic time dilation
Time is shortest in frame where event is at rest. The frame where event is at rest is called the "proper" frame measured time is longer in any other frame of reference

$\Delta t^{\prime}>\Delta t$
because $\gamma>1\}$

- This means Δt is shortest Δt is proper frame Progenframeis spaceship because that is where person in question is at rest.
person lives Normal life on Spaceship 70 years

To observers on earth that time is measured to be 161 years.
observers on earth perceive time (ind-biological time) to Move slower on Spaceship.

Time is Relative

