WELCOME to Physics 100

This class is a tour of the universe as seen by modern science. Physics 100 is designed for non-science majors. The course is conceptual and the use of mathematics will be limited.

- ➤ motion
- > Work
- ➤ Energy
- > Gravitation
- Conservation of momentum and energy
- Constant acceleration motion
- > Rotational motion
- > Thermodynamics
- ➤ Waves
- ≻ light
- > electricity and magnetism
- ➤ nuclear forces
- > Standard Model of particle physics

- ➤ The Big Bang
 - > Dark matter
 - ➤ stellar evolution
 - > Special Theory of Relativity
- General Theory of Relativity
- > Quarks, leptons, gluons, baryons, mesons, etc.
- cosmic microwave background
- ➢ quantum mechanics
- > Heisenberg's Uncertanity Principle
- > electricity and magnetism
- \succ radiation
- ➤ nuclear bombs
- ≻ etc.

No previous physics instruction is assumed.

The intimate relationship between the very big and the very small

Things could be worse ...

Professor Steven Manly B&L 203E 5-8473 steven.manly@rochester.edu http://web.pas.rochester.edu/~manly/class/P100_2007/

Name

University (@mail ...) email address

Year: Fr/So/Jr/Sr?

Did you receive the email I sent earlier in the week to the class listserve? Yes/No If "No", provide SID

Favorite midnight snack

Major/main career interest

Why you are in this course

Evaluation:

Scheme	Exam 1	Exam 2	Final exam	Present.	recitation	Present. grading
1		29.33%	29.33%	29.33%	8%	4%
2	29.33%		29.33%	29.33%	8%	4%
3	29.33%	29.33%		29.33%	8%	4%
5	22%	22%	22%	22%	8%	4%

Each scheme calculated, best average sets your place on the numerical curve

I place grade boundaries on numerical curve

Length:

Distance	Length (m
Radius of visible universe	$1 \ge 10^{26}$
To Andromeda Galaxy	$2 \ge 10^{22}$
To nearest star	$4 \ge 10^{16}$
Earth to Sun	$1.5 \ge 10^{11}$
Radius of Earth	$6.4 \ge 10^6$
Sears Tower	$4.5 \ge 10^2$
Football field	$1.0 \ge 10^2$
Tall person	$2 \ge 10^{\circ}$
Thickness of paper	1 x 10 ⁻⁴
Wavelength of blue light	4 x 10 ⁻⁷
Diameter of hydrogen atom	1 x 10 ⁻¹⁰
Diameter of proton	1×10^{-15}

Time

Interval	Time (s)
Age of universe	$5 \ge 10^{17}$
Age of Grand Canyon	$3 \ge 10^{14}$
32 years	1 x 10 ⁹
One year	3.2 x 10 ⁷
One hour	$3.6 \ge 10^3$
Light travel from Earth to Moon	$1.3 \ge 10^{\circ}$
One cycle of guitar A string	2 x 10 ⁻³
One cycle of FM radio wave	6 x 10 ⁻⁸
Lifetime of neutral pi meson	1 x 10 ⁻¹⁶
Lifetime of top quark	4 x 10 ⁻²⁵

Mass:

Object	Mass (kg)
Milky Way Galaxy	$4 \ge 10^{41}$
Sun	$2 \ge 10^{30}$
Earth	6 x 10 ²⁴
Boeing 747	4 x 10 ⁵
Car	1 x 10 ³
Student	$7 \ge 10^{1}$
Dust particle	1 x 10 ⁻⁹
Top quark	3 x 10 ⁻²⁵
Proton	2 x 10 ⁻²⁷
Electron	9 x 10 ⁻³¹
Neutrino	1 x 10 ⁻³⁸